nvcc: command not found

nvcc: command not found

nvcc命令是 NVIDIA CUDA 编译器,就类似于gcc是c语言的编译器,用于编译 CUDA 代码并生成 GPU 可执行文件。由于程序是要经过编译器编程成可执行的二进制文件,而cuda程序有两种代码,一种是运行在CPU上的host代码,一种是运行在GPU上的device代码,所以nvcc编译器要保证两部分代码能够编译成二进制文件在不同的机器上执行。nvcc涉及到的文件后缀及相关意义如下表:

文件后缀意义
.cucuda源文件,包括host和device代码
.cup经过预处理的cuda源文件,编译选项–preprocess/-E
.cc源文件
.cc/.cxx/.cppc++源文件
.gpugpu中间文件,编译选项–gpu
.ptx类似汇编代码,编译选项–ptx
.o/.obj目标文件,编译选项–compile/-c
.a/.lib库文件,编译选项–lib/-lib
.res资源文件
.so共享目标文件,编译选项–shared/-shared
.cubincuda的二进制文件,编译选项-cubin

相关资料和表格来源:显卡,显卡驱动,nvcc, cuda driver,cudatoolkit,cudnn到底是什么?

我们给Jetson Nano装的是NVIDIA官方提供的系统镜像,已经提前在系统里安装好了CUDA,我们可以运行jtop工具里查看到。

在这里插入图片描述

但是我们在终端命令行输入nvcc -V却显示未找到命令。

如果已经安装了 NVIDIA CUDA 工具包,但无法找到nvcc命令,可能是因为其路径未包含在系统环境变量中。

可以输入下方命令查看本地是否已安装CUDA(我们通过上方jtop工具,已经可以确定已经安装过CUDA了,这里是演示通过命令行查看CUDA安装位置)。

cd /usr/local
ls

在这里插入图片描述

可以看到,我们确实已经安装好了CUDA,那么接下来就是把CUDA Toolkit路径写入系统环境变量中。

通过vim工具定位到 ~/.bashrc 的最末尾,然后添加命令。

vim ~/.bashrc
# 定位到内容末尾,最末尾

# 按"i"添加命令:
export CUDA_HOME=/usr/local/cuda
export PATH=$PATH:$CUDA_HOME/bin
export LD_LIBRARY_PATH=/usr/local/cuda-10.0/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
# 添加完成后按"ESC"退出编辑界面,输入":wq"退出

vim 编辑界面:
在这里插入图片描述

添加完路径后需要再刷新一下配置文件,然后验证nvcc.

# 添加后刷新配置文件
source ~/.bashrc

# 再验证nvcc
nvcc -V

在这里插入图片描述

已经可以查看当前系统上的 CUDA 工具包版本和nvcc版本。

### 问题分析 当在终端输入 `nvcc -V` 后提示 `bash: nvcc: command not found`,表明当前环境中缺少 CUDA 编译器驱动程序 (NVCC),或者 NVCC 虽然已安装但其路径未被正确配置到系统的环境变量中。 以下是可能的原因及其对应的解决方案: --- ### 可能原因及解决方法 #### 1. **CUDA 已安装但环境变量未设置** 如果 CUDA 已经安装但在系统中无法通过命令访问,则可能是环境变量未正确配置。可以通过修改 `.bashrc` 文件来解决问题[^3]。 ```bash vim ~/.bashrc ``` 在文件末尾添加以下两行内容以设置环境变量: ```bash export LD_LIBRARY_PATH=/usr/local/cuda/lib:$LD_LIBRARY_PATH export PATH=$PATH:/usr/local/cuda/bin ``` 保存并退出编辑器后,重新加载 `.bashrc` 配置文件: ```bash source ~/.bashrc ``` 验证是否成功: ```bash nvcc -V ``` --- #### 2. **CUDA 尚未安装** 如果 `/usr/local/cuda` 或其他标准 CUDA 安装路径不存在,则说明 CUDA 还未安装。此时需要下载并安装 NVIDIA 提供的官方 CUDA Toolkit[^4]。 可以前往 [NVIDIA CUDA 下载页面](https://developer.nvidia.com/cuda-downloads) 获取适合操作系统的版本,并按照文档中的指导完成安装过程。 完成后重复上述环境变量配置步骤。 --- #### 3. **Conda 环境下 CUDA 版本冲突** 如果使用的是 Anaconda 并通过 `conda install cudatoolkit` 安装了 CUDA 工具包,则可能会遇到 Conda 打包的 CUDA 和 NVIDIA 原生工具之间的不兼容性[^5]。 在这种情况下,建议切换至原生 CUDA 工具链或将 Conda 环境中的 CUDA 替换为匹配的版本。具体做法如下: - 检查当前 Conda 环境使用的 CUDA 版本: ```bash conda list | grep cudatoolkit ``` - 如果需要更换为特定版本,可卸载现有版本并重新安装目标版本: ```bash conda remove cudatoolkit conda install cudatoolkit=11.3 # 根据需求调整版本号 ``` - 若需完全依赖原生 CUDA,请确保将其 bin 路径加入环境变量(见第 1 条),并在启动 Python 程序前关闭 Conda 自动管理的 CUDA 设置。 --- #### 4. **Jetson 设备上的特殊处理** 对于 Jetson Xavier NX 等嵌入式设备,默认会预装部分 CUDA 组件,但仍可能出现环境变量缺失的情况。同样可通过编辑 `.bashrc` 添加对应路径实现修复。 例如,在某些 Jetson 发行版中,CUDA 的默认位置可能位于 `/usr/local/cuda-<version>`,因此应确认实际路径后再更新环境变量。 --- ### 总结 以上提供了针对不同场景下的多种解决策略。通常推荐优先检查是否存在有效的 CUDA 安装以及相应的环境变量配置情况;若仍存在问题则进一步排查 Conda 或硬件平台特异性因素的影响。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值