SCAU 8648 图的深度遍历

文章提供了图的邻接表存储结构及深度优先遍历(DFS)的C语言实现。代码包括了图的创建、访问顶点的函数指针以及DFS的递归函数。DFS函数用于从指定顶点开始递归遍历图,而DFSTraverse函数用于遍历所有未访问的顶点,确保遍历完整个图,特别处理了非连通图的情况。
摘要由CSDN通过智能技术生成

解答:


void print(char *i) 
{ 
	printf("%s ",i); 
} 

/*深度遍历*/ 
int visited[MAX_VERTEX_NUM]; /* 访问标志数组(全局量),未访问标记0,访问标记1 */ 
void(*VisitFunc)(char* v); /* 函数变量(全局量) */ 

void DFS(ALGraph G,int i) 
{ /* 从第i个顶点出发递归地深度优先遍历图G。算法7.5 */ 
/* 设置访问标志为TRUE(已访问) */ 
    visited[i]=1;//访问过的标记
/* 访问第v个顶点 */
    VisitFunc(G.vertices[i].data);//是结构体不是指针,所以用.不用->

	ArcNode *p=G.vertices[i].firstarc;
	
	while(p!=NULL)
	{/* 对v的尚未访问的邻接点w递归调用DFS */ 
		if(!visited[p->adjvex])//p->adjvex为邻接节点的位置,如果没访问过,就对其调用DFS
		DFS(G,p->adjvex);
		p=p->nextarc; 
	}
	  
} 
void DFSTraverse(ALGraph G) 
{ /* 对图G作深度优先遍历。算法7.4 */ 
	int i;
/* 使用全局变量VisitFunc,使DFS不必设函数指针参数 */ 
	VisitFunc = print;
/* 访问标志数组初始化 */ 
	//可以看到 CreateGraph的时候是从0开始建表的,所以visited数组也从0开始初始化 
	for(i=0;i<G.vexnum;i++) visited[i]=0;
	
	//对每个没有访问过的表节点调用DFS 
	for(i=0;i<G.vexnum;i++) 
	{
		if(visited[i]==0) DFS(G,i);
	}
	 
/* 对尚未访问的顶点调用DFS */ 

} 

QA:
 

Q1:为什么要用两个函数,只用一个DFS不能完成遍历吗

A1:DFSTraverse用于解决有多个联通分量的情况。

使用深度优先搜索(DFS)可以完全遍历一个连通图,即遍历图中的所有顶点和边。DFS从一个起始顶点开始,沿着路径尽可能深入地探索,直到无法继续或遇到已访问过的顶点。然后回溯到前一个顶点,继续探索其他未访问的邻接顶点,直到遍历完所有顶点。

然而,如果图是非连通的,即存在多个连通分量,为了确保遍历到所有的连通分量,DFSTraverse使用一个循环遍历所有的顶点,并对每个未访问过的顶点调用DFS函数。这样可以确保对于每个连通分量都会进行一次深度优先遍历。

因此,该代码段的作用是确保对于非连通图,遍历到所有的连通分量。每次在循环中选择一个未访问的顶点作为起始顶点,通过DFS函数遍历该连通分量。这样可以保证整个图的完全遍历。

Q2:void(*VisitFunc)(char* v)是什么
A2:

函数指针 VisitFunc 允许我们在深度优先遍历过程中定义自定义的操作,以便在访问每个节点时执行特定的功能。该函数接受一个字符指针参数 v,该参数表示当前访问到的节点的值或其他相关信息。

通过使用函数指针,我们可以灵活地定义不同的操作,例如打印节点值、存储节点值、统计节点数量等等。在深度优先遍历算法中,我们在访问节点时调用函数指针所指向的函数,并将当前节点的值作为参数传递给该函数。

Q3:如何使用函数指针VisitFunc
A3:

使用函数指针 VisitFunc 的步骤如下:

  1. 定义一个函数,该函数具有与函数指针 VisitFunc 相同的参数和返回类型。

    void MyVisitFunc(char* v) { // 执行你的操作,例如打印节点值 printf("%s ", v); }

  2. 在深度优先遍历函数中,将函数指针 VisitFunc 设置为指向你定义的函数。
    VisitFunc = MyVisitFunc;

  3. 在遍历过程中,当访问到每个节点时,调用函数指针 VisitFunc 所指向的函数,并传递当前节点的值作为参数

题目:
8648 图的深度遍历

时间限制:1000MS  代码长度限制:10KB
提交次数:1821 通过次数:1037

题型: 编程题   语言: G++;GCC


void print(char *i) 
{ 
	printf("%s ",i); 
} 

/*深度遍历*/ 
int visited[MAX_VERTEX_NUM]; /* 访问标志数组(全局量),未访问标记0,访问标记1 */ 
void(*VisitFunc)(char* v); /* 函数变量(全局量) */ 

void DFS(ALGraph G,int i) 
{ /* 从第i个顶点出发递归地深度优先遍历图G。算法7.5 */ 
/* 设置访问标志为TRUE(已访问) */ 
    visited[i]=1;//访问过的标记
/* 访问第v个顶点 */
    VisitFunc(G.vertices[i].data);//是结构体不是指针,所以用.不用->

	ArcNode *p=G.vertices[i].firstarc;
	
	while(p!=NULL)
	{/* 对v的尚未访问的邻接点w递归调用DFS */ 
		if(!visited[p->adjvex])//p->adjvex为邻接节点的位置,如果没访问过,就对其调用DFS
		DFS(G,p->adjvex);
		p=p->nextarc; 
	}
	  
} 
void DFSTraverse(ALGraph G) 
{ /* 对图G作深度优先遍历。算法7.4 */ 
	int i;
/* 使用全局变量VisitFunc,使DFS不必设函数指针参数 */ 
	VisitFunc = print;
/* 访问标志数组初始化 */ 
	//可以看到 CreateGraph的时候是从0开始建表的,所以visited数组也从0开始初始化 
	for(i=0;i<G.vexnum;i++) visited[i]=0;
	
	//对每个没有访问过的表节点调用DFS 
	for(i=0;i<G.vexnum;i++) 
	{
		if(visited[i]==0) DFS(G,i);
	}
	 
/* 对尚未访问的顶点调用DFS */ 

} 

Description

 实现图的邻接表存储结构及一些基本操作函数。在此基础上实现图的深度遍历算法并加以测试。本题只给出部分代码,请补全内容。

#include"string.h" 
#include"malloc.h" /* malloc()等 */ 
#include"stdio.h" /* EOF(=^Z或F6),NULL */ 
#include"stdlib.h" /* exit() */ 
typedef int InfoType; /* 顶点权值类型 */ 
#define MAX_NAME 3 /* 顶点字符串的最大长度+1 */ 
typedef char VertexType[MAX_NAME]; /* 字符串类型 */ 
/*图的邻接表存储表示 */ 
#define MAX_VERTEX_NUM 20 
typedef enum{DG,DN,AG,AN}GraphKind; /* {有向图,有向网,无向图,无向网} */ 
typedef struct ArcNode 
{ 
	int adjvex; /* 该弧所指向的顶点的位置 */ 
	struct ArcNode *nextarc; /* 指向下一条弧的指针 */ 
	InfoType *info; /* 网的权值指针) */ 
}ArcNode; /* 表结点 */ 

typedef struct 
{ 
	VertexType data; /* 顶点信息 */ 
	ArcNode *firstarc; /* 第一个表结点的地址,指向第一条依附该顶点的弧的指针 */ 
}VNode,AdjList[MAX_VERTEX_NUM]; /* 头结点 */ 

typedef struct 
{ 
	AdjList vertices; 
	int vexnum,arcnum; /* 图的当前顶点数和弧数 */ 
	int kind; /* 图的种类标志 */ 
}ALGraph; 

int LocateVex(ALGraph G,VertexType u) 
{ /* 初始条件: 图G存在,u和G中顶点有相同特征 */ 
/* 操作结果: 若G中存在顶点u,则返回该顶点在图中位置;否则返回-1 */ 
	int i; 
	for(i=0;i<G.vexnum;++i) 
		if(strcmp(u,G.vertices[i].data)==0) 
			return i; 
	return -1; 
} 

void CreateGraph(ALGraph *G) 
{ /* 采用邻接表存储结构,构造没有相关信息的图G(用一个函数构造4种图) */ 
	int i,j,k; 
	int w; /* 权值 */ 
	VertexType va,vb; 
	ArcNode *p; 
	//printf("Enter the type of map:(0~3): "); 
	scanf("%d",&(*G).kind); 
	//printf("Enter Vertex number,Arc number: "); 
	scanf("%d%d",&(*G).vexnum,&(*G).arcnum); 
	//printf("Enter %d Vertex :\n",(*G).vexnum); 
	for(i=0;i<(*G).vexnum;++i) /* 构造顶点向量 */ 
	{ 
		scanf("%s",(*G).vertices[i].data); 
		(*G).vertices[i].firstarc=NULL; 
	} 
	//if((*G).kind==1||(*G).kind==3) /* 网 */ 
	//	printf("Enter order every arc weight,head and tail (Takes the gap by the blank space ):\n"); 
	//else /* 图 */ 
	//	printf("Enter order every arc head and tail (Takes the gap by the blank space ):\n"); 
	for(k=0;k<(*G).arcnum;++k) /* 构造表结点链表 */ 
	{ 
		if((*G).kind==1||(*G).kind==3) /* 网 */ 
		scanf("%d%s%s",&w,va,vb); 
		else /* 图 */ 
		scanf("%s%s",va,vb); 
		i=LocateVex(*G,va); /* 弧尾 */ 
		j=LocateVex(*G,vb); /* 弧头 */ 
		p=(ArcNode*)malloc(sizeof(ArcNode)); 
		p->adjvex=j; 
		if((*G).kind==1||(*G).kind==3) /* 网 */ 
		{ 
			p->info=(int *)malloc(sizeof(int)); 
			*(p->info)=w; 
		} 
		else 
		p->info=NULL; /* 图 */ 
		p->nextarc=(*G).vertices[i].firstarc; /* 插在表头 */ 
		(*G).vertices[i].firstarc=p; 
		if((*G).kind>=2) /* 无向图或网,产生第二个表结点 */ 
		{ 
			p=(ArcNode*)malloc(sizeof(ArcNode)); 
			p->adjvex=i; 
			if((*G).kind==3) /* 无向网 */ 
			{ 
				p->info=(int*)malloc(sizeof(int)); 
				*(p->info)=w; 
			} 
			else 
			p->info=NULL; /* 无向图 */ 
			p->nextarc=(*G).vertices[j].firstarc; /* 插在表头 */ 
			(*G).vertices[j].firstarc=p; 
		} 
	}	 
} 

VertexType* GetVex(ALGraph G,int v) 
{ /* 初始条件: 图G存在,v是G中某个顶点的序号。操作结果: 返回v的值 */ 
	if(v>=G.vexnum||v<0) 
		exit(0); 
	return &G.vertices[v].data; 
} 

int FirstAdjVex(ALGraph G,VertexType v) 
{ /* 初始条件: 图G存在,v是G中某个顶点 */ 
/* 操作结果: 返回v的第一个邻接顶点的序号。若顶点在G中没有邻接顶点,则返回-1 */ 
	ArcNode *p; 
	int v1; 
	v1=LocateVex(G,v); /* v1为顶点v在图G中的序号 */ 
	p=G.vertices[v1].firstarc; 
	if(p) 
		return p->adjvex; 
	else 
		return -1; 
} 

int NextAdjVex(ALGraph G,VertexType v,VertexType w) 
{ /* 初始条件: 图G存在,v是G中某个顶点,w是v的邻接顶点 */ 
/* 操作结果: 返回v的(相对于w的)下一个邻接顶点的序号。 */ 
/* 若w是v的最后一个邻接点,则返回-1 */ 
	ArcNode *p; 
	int v1,w1; 
	v1=LocateVex(G,v); /* v1为顶点v在图G中的序号 */ 
	w1=LocateVex(G,w); /* w1为顶点w在图G中的序号 */ 
	p=G.vertices[v1].firstarc; 
	while(p&&p->adjvex!=w1) /* 指针p不空且所指表结点不是w */ 
		p=p->nextarc; 
	if(!p||!p->nextarc) /* 没找到w或w是最后一个邻接点 */ 
		return -1; 
	else /* p->adjvex==w */ 
		return p->nextarc->adjvex; /* 返回v的(相对于w的)下一个邻接顶点的序号 */ 
} 

/*深度遍历*/ 
int visited[MAX_VERTEX_NUM]; /* 访问标志数组(全局量),未访问标记0,访问标记1 */ 
void(*VisitFunc)(char* v); /* 函数变量(全局量) */ 
void DFS(ALGraph G,int v) 
{ /* 从第v个顶点出发递归地深度优先遍历图G。算法7.5 */ 
/* 设置访问标志为TRUE(已访问) */ 
/* 访问第v个顶点 */ 
/* 对v的尚未访问的邻接点w递归调用DFS */ 

} 
void DFSTraverse(ALGraph G) 
{ /* 对图G作深度优先遍历。算法7.4 */ 
/* 使用全局变量VisitFunc,使DFS不必设函数指针参数 */ 
/* 访问标志数组初始化 */ 
/* 对尚未访问的顶点调用DFS */ 

	printf("\n"); 
} 

void print(char *i) 
{ 
	printf("%s ",i); 
} 

int main() 
{ 
	ALGraph g; 
	CreateGraph(&g); 
	DFSTraverse(g); 
	return 1;
}



 

输入格式

第一行:输入0到3之间整数(有向图:0,有向网:1,无向图:2,无向网:3);
第二行:输入顶点数和边数;
第三行:输入各个顶点的值(字符型,长度〈3);(遍历从输入的第一个顶点开始)
第四行:输入每条弧(边)弧尾和弧头(以空格作为间隔),如果是网还要输入权值;


 

输出格式

输出对图深度遍历的结果。


 

输入样例

0
3 3     
a b c
a b
b c
c b


 

输出样例

a b c


 

提示

注意题目的邻接表采用的是头插法,也就是后出现的边节点先被访问。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值