Description
实现图的邻接表存储结构及一些基本操作函数。在此基础上实现图的深度遍历算法并加以测试。本题只给出部分代码,请补全内容。
#include"string.h"
#include"malloc.h" /* malloc()等 /
#include"stdio.h" / EOF(=^Z或F6),NULL /
#include"stdlib.h" / exit() /
typedef int InfoType; / 顶点权值类型 /
#define MAX_NAME 3 / 顶点字符串的最大长度+1 /
typedef char VertexType[MAX_NAME]; / 字符串类型 */
/*图的邻接表存储表示 /
#define MAX_VERTEX_NUM 20
typedef enum{DG,DN,AG,AN}GraphKind; / {有向图,有向网,无向图,无向网} /
typedef struct ArcNode
{
int adjvex; / 该弧所指向的顶点的位置 */
struct ArcNode nextarc; / 指向下一条弧的指针 */
InfoType info; / 网的权值指针) /
}ArcNode; / 表结点 */
typedef struct
{
VertexType data; /* 顶点信息 */
ArcNode firstarc; / 第一个表结点的地址,指向第一条依附该顶点的弧的指针 /
}VNode,AdjList[MAX_VERTEX_NUM]; / 头结点 */
typedef struct
{
AdjList vertices;
int vexnum,arcnum; /* 图的当前顶点数和弧数 /
int kind; / 图的种类标志 */
}ALGraph;
int LocateVex(ALGraph G,VertexType u)
{ /* 初始条件: 图G存在,u和G中顶点有相同特征 /
/ 操作结果: 若G中存在顶点u,则返回该顶点在图中位置;否则返回-1 */
int i;
for(i=0;i<G.vexnum;++i)
if(strcmp(u,G.vertices[i].data)==0)
return i;
return -1;
}
void CreateGraph(ALGraph G)
{ / 采用邻接表存储结构,构造没有相关信息的图G(用一个函数构造4种图) /
int i,j,k;
int w; / 权值 */
VertexType va,vb;
ArcNode *p;
//printf(“Enter the type of map:(0~3): “);
scanf(”%d”,&(*G).kind);
//printf(“Enter Vertex number,Arc number: “);
scanf(”%d%d”,&(*G).vexnum,&(*G).arcnum);
//printf(“Enter %d Vertex :\n”,(*G).vexnum);
for(i=0;i<(G).vexnum;++i) / 构造顶点向量 */
{
scanf(“%s”,(*G).vertices[i].data);
(*G).vertices[i].firstarc=NULL;
}
//if((G).kind1||(*G).kind3) / 网 /
// printf(“Enter order every arc weight,head and tail (Takes the gap by the blank space ):\n”);
//else / 图 */
// printf(“Enter order every arc head and tail (Takes the gap by the blank space ):\n”);
for(k=0;k<(G).arcnum;++k) / 构造表结点链表 */
{
if((G).kind1||(*G).kind3) / 网 /
scanf(“%d%s%s”,&w,va,vb);
else / 图 */
scanf(“%s%s”,va,vb);
i=LocateVex(G,va); / 弧尾 */
j=LocateVex(G,vb); / 弧头 /
p=(ArcNode)malloc(sizeof(ArcNode));
p->adjvex=j;
if((G).kind1||(*G).kind3) / 网 */
{
p->info=(int *)malloc(sizeof(int));
(p->info)=w;
}
else
p->info=NULL; / 图 */
p->nextarc=(G).vertices[i].firstarc; / 插在表头 */
(*G).vertices[i].firstarc=p;
if((G).kind>=2) / 无向图或网,产生第二个表结点 /
{
p=(ArcNode)malloc(sizeof(ArcNode));
p->adjvex=i;
if((G).kind==3) / 无向网 /
{
p->info=(int)malloc(sizeof(int));
(p->info)=w;
}
else
p->info=NULL; / 无向图 */
p->nextarc=(G).vertices[j].firstarc; / 插在表头 */
(*G).vertices[j].firstarc=p;
}
}
}
VertexType* GetVex(ALGraph G,int v)
{ /* 初始条件: 图G存在,v是G中某个顶点的序号。操作结果: 返回v的值 */
if(v>=G.vexnum||v<0)
exit(0);
return &G.vertices[v].data;
}
int FirstAdjVex(ALGraph G,VertexType v)
{ /* 初始条件: 图G存在,v是G中某个顶点 /
/ 操作结果: 返回v的第一个邻接顶点的序号。若顶点在G中没有邻接顶点,则返回-1 */
ArcNode p;
int v1;
v1=LocateVex(G,v); / v1为顶点v在图G中的序号 */
p=G.vertices[v1].firstarc;
if§
return p->adjvex;
else
return -1;
}
int NextAdjVex(ALGraph G,VertexType v,VertexType w)
{ /* 初始条件: 图G存在,v是G中某个顶点,w是v的邻接顶点 /
/ 操作结果: 返回v的(相对于w的)下一个邻接顶点的序号。 /
/ 若w是v的最后一个邻接点,则返回-1 */
ArcNode p;
int v1,w1;
v1=LocateVex(G,v); / v1为顶点v在图G中的序号 /
w1=LocateVex(G,w); / w1为顶点w在图G中的序号 /
p=G.vertices[v1].firstarc;
while(p&&p->adjvex!=w1) / 指针p不空且所指表结点不是w /
p=p->nextarc;
if(!p||!p->nextarc) / 没找到w或w是最后一个邻接点 /
return -1;
else / p->adjvex==w /
return p->nextarc->adjvex; / 返回v的(相对于w的)下一个邻接顶点的序号 */
}
/深度遍历/
int visited[MAX_VERTEX_NUM]; /* 访问标志数组(全局量),未访问标记0,访问标记1 /
void(VisitFunc)(char v); / 函数变量(全局量) /
void DFS(ALGraph G,int v)
{ / 从第v个顶点出发递归地深度优先遍历图G。算法7.5 /
/ 设置访问标志为TRUE(已访问) /
/ 访问第v个顶点 /
/ 对v的尚未访问的邻接点w递归调用DFS */
}
void DFSTraverse(ALGraph G)
{ /* 对图G作深度优先遍历。算法7.4 /
/ 使用全局变量VisitFunc,使DFS不必设函数指针参数 /
/ 访问标志数组初始化 /
/ 对尚未访问的顶点调用DFS */
printf("\n");
}
void print(char *i)
{
printf("%s ",i);
}
int main()
{
ALGraph g;
CreateGraph(&g);
DFSTraverse(g);
return 1;
}
输入格式
第一行:输入0到3之间整数(有向图:0,有向网:1,无向图:2,无向网:3);
第二行:输入顶点数和边数;
第三行:输入各个顶点的值(字符型,长度〈3);(遍历从输入的第一个顶点开始)
第四行:输入每条弧(边)弧尾和弧头(以空格作为间隔),如果是网还要输入权值;
输出格式
输出对图深度遍历的结果。
输入样例
0
3 3
a b c
a b
b c
c b
输出样例
a b c
提示
注意题目的邻接表采用的是头插法,也就是后出现的边节点先被访问。
需要补充的代码:
/*深度遍历*/
int visited[MAX_VERTEX_NUM]; /* 访问标志数组(全局量),未访问标记0,访问标记1 */
void(*VisitFunc)(char* v); /* 函数变量(全局量) */
void DFS(ALGraph G,int v)
{
/* 从第v个顶点出发递归地深度优先遍历图G。算法7.5 */
/* 设置访问标志为TRUE(已访问) */
/* 访问第v个顶点 */
/* 对v的尚未访问的邻接点w递归调用DFS */
int w;
visited[v]=1;
VisitFunc(G.vertices[v].data);
for(w=FirstAdjVex(G,G.vertices[v].data);w>=0;w=NextAdjVex(G,G.vertices[v].data,G.vertices[w].data))
{
if(!visited[w])
DFS(G,w);
}
}
void DFSTraverse(ALGraph G,void(*Visit)(char*))
{
/* 对图G作深度优先遍历。算法7.4 */
/* 使用全局变量VisitFunc,使DFS不必设函数指针参数 */
/* 访问标志数组初始化 */
/* 对尚未访问的顶点调用DFS */
int v;
VisitFunc=Visit;
for(v=0;v<G.vexnum;v++)
{
visited[v]=0;
}
for(v=0;v<G.vexnum;v++)
{
if(!visited[v])
DFS(G,v);
}
printf("\n");
}
int main()
{
ALGraph g;
CreateGraph(&g);
DFSTraverse(g,print);
return 1;
}
完整代码如下:
#include"string.h"
#include"malloc.h" /* malloc()等 */
#include"stdio.h" /* EOF(=^Z或F6),NULL */
#include"stdlib.h" /* exit() */
typedef int InfoType; /* 顶点权值类型 */
#define MAX_NAME 3 /* 顶点字符串的最大长度+1 */
typedef char VertexType[MAX_NAME]; /* 字符串类型 */
/*图的邻接表存储表示 */
#define MAX_VERTEX_NUM 20
typedef enum {DG,DN,AG,AN} GraphKind; /* {有向图,有向网,无向图,无向网} */
typedef struct ArcNode
{
int adjvex; /* 该弧所指向的顶点的位置 */
struct ArcNode *nextarc; /* 指向下一条弧的指针 */
InfoType *info; /* 网的权值指针) */
} ArcNode; /* 表结点 */
typedef struct
{
VertexType data; /* 顶点信息 */
ArcNode *firstarc; /* 第一个表结点的地址,指向第一条依附该顶点的弧的指针 */
} VNode,AdjList[MAX_VERTEX_NUM]; /* 头结点 */
typedef struct
{
AdjList vertices;
int vexnum,arcnum; /* 图的当前顶点数和弧数 */
int kind; /* 图的种类标志 */
} ALGraph;
int LocateVex(ALGraph G,VertexType u)
{
/* 初始条件: 图G存在,u和G中顶点有相同特征 */
/* 操作结果: 若G中存在顶点u,则返回该顶点在图中位置;否则返回-1 */
int i;
for(i=0; i<G.vexnum; ++i)
if(strcmp(u,G.vertices[i].data)==0)
return i;
return -1;
}
void CreateGraph(ALGraph *G)
{
/* 采用邻接表存储结构,构造没有相关信息的图G(用一个函数构造4种图) */
int i,j,k;
int w; /* 权值 */
VertexType va,vb;
ArcNode *p;
//printf("Enter the type of map:(0~3): ");
scanf("%d",&(*G).kind);
//printf("Enter Vertex number,Arc number: ");
scanf("%d%d",&(*G).vexnum,&(*G).arcnum);
//printf("Enter %d Vertex :\n",(*G).vexnum);
for(i=0; i<(*G).vexnum; ++i) /* 构造顶点向量 */
{
scanf("%s",(*G).vertices[i].data);
(*G).vertices[i].firstarc=NULL;
}
//if((*G).kind==1||(*G).kind==3) /* 网 */
// printf("Enter order every arc weight,head and tail (Takes the gap by the blank space ):\n");
//else /* 图 */
// printf("Enter order every arc head and tail (Takes the gap by the blank space ):\n");
for(k=0; k<(*G).arcnum; ++k) /* 构造表结点链表 */
{
if((*G).kind==1||(*G).kind==3) /* 网 */
scanf("%d%s%s",&w,va,vb);
else /* 图 */
scanf("%s%s",va,vb);
i=LocateVex(*G,va); /* 弧尾 */
j=LocateVex(*G,vb); /* 弧头 */
p=(ArcNode*)malloc(sizeof(ArcNode));
p->adjvex=j;
if((*G).kind==1||(*G).kind==3) /* 网 */
{
p->info=(int *)malloc(sizeof(int));
*(p->info)=w;
}
else
p->info=NULL; /* 图 */
p->nextarc=(*G).vertices[i].firstarc; /* 插在表头 */
(*G).vertices[i].firstarc=p;
if((*G).kind>=2) /* 无向图或网,产生第二个表结点 */
{
p=(ArcNode*)malloc(sizeof(ArcNode));
p->adjvex=i;
if((*G).kind==3) /* 无向网 */
{
p->info=(int*)malloc(sizeof(int));
*(p->info)=w;
}
else
p->info=NULL; /* 无向图 */
p->nextarc=(*G).vertices[j].firstarc; /* 插在表头 */
(*G).vertices[j].firstarc=p;
}
}
}
VertexType* GetVex(ALGraph G,int v)
{
/* 初始条件: 图G存在,v是G中某个顶点的序号。操作结果: 返回v的值 */
if(v>=G.vexnum||v<0)
exit(0);
return &G.vertices[v].data;
}
int FirstAdjVex(ALGraph G,VertexType v)
{
/* 初始条件: 图G存在,v是G中某个顶点 */
/* 操作结果: 返回v的第一个邻接顶点的序号。若顶点在G中没有邻接顶点,则返回-1 */
ArcNode *p;
int v1;
v1=LocateVex(G,v); /* v1为顶点v在图G中的序号 */
p=G.vertices[v1].firstarc;
if(p)
return p->adjvex;
else
return -1;
}
int NextAdjVex(ALGraph G,VertexType v,VertexType w)
{
/* 初始条件: 图G存在,v是G中某个顶点,w是v的邻接顶点 */
/* 操作结果: 返回v的(相对于w的)下一个邻接顶点的序号。 */
/* 若w是v的最后一个邻接点,则返回-1 */
ArcNode *p;
int v1,w1;
v1=LocateVex(G,v); /* v1为顶点v在图G中的序号 */
w1=LocateVex(G,w); /* w1为顶点w在图G中的序号 */
p=G.vertices[v1].firstarc;
while(p&&p->adjvex!=w1) /* 指针p不空且所指表结点不是w */
p=p->nextarc;
if(!p||!p->nextarc) /* 没找到w或w是最后一个邻接点 */
return -1;
else /* p->adjvex==w */
return p->nextarc->adjvex; /* 返回v的(相对于w的)下一个邻接顶点的序号 */
}
/*深度遍历*/
int visited[MAX_VERTEX_NUM]; /* 访问标志数组(全局量),未访问标记0,访问标记1 */
void(*VisitFunc)(char* v); /* 函数变量(全局量) */
void DFS(ALGraph G,int v)
{
/* 从第v个顶点出发递归地深度优先遍历图G。算法7.5 */
/* 设置访问标志为TRUE(已访问) */
/* 访问第v个顶点 */
/* 对v的尚未访问的邻接点w递归调用DFS */
int w;
visited[v]=1;
VisitFunc(G.vertices[v].data);
for(w=FirstAdjVex(G,G.vertices[v].data);w>=0;w=NextAdjVex(G,G.vertices[v].data,G.vertices[w].data))
{
if(!visited[w])
DFS(G,w);
}
}
void DFSTraverse(ALGraph G,void(*Visit)(char*))
{
/* 对图G作深度优先遍历。算法7.4 */
/* 使用全局变量VisitFunc,使DFS不必设函数指针参数 */
/* 访问标志数组初始化 */
/* 对尚未访问的顶点调用DFS */
int v;
VisitFunc=Visit;
for(v=0;v<G.vexnum;v++)
{
visited[v]=0;
}
for(v=0;v<G.vexnum;v++)
{
if(!visited[v])
DFS(G,v);
}
printf("\n");
}
void print(char *i)
{
printf("%s ",i);
}
int main()
{
ALGraph g;
CreateGraph(&g);
DFSTraverse(g,print);
return 1;
}