尼科彻斯定理(华为机试python)

97 篇文章 8 订阅
该博客通过代码实现验证尼科彻斯定理,即任何正整数的立方可以表示为该数个连续奇数的和。文章中给出的Python代码尝试通过计算找出对应的连续奇数序列,但原始方法可能导致效率低下。通过推导得出第一个奇数的通项公式,优化了搜索过程,提高了效率。
摘要由CSDN通过智能技术生成

验证尼科彻斯定理,即:任何一个整数m的立方都可以写成m个连续奇数之和。

例如:

1^3=1

2^3=3+5

3^3=7+9+11

4^3=13+15+17+19

输入一个正整数m(m≤100),将m的立方写成m个连续奇数之和的形式输出。

  • 思路直接使用暴力法,枚举所有情况。超时。经过推算得出,加法表达式的第一个字母的通项是 n^2 - n + 1 。
    代码如下:
def nkcsi():
    while True:
        try:
            n = int(input())
        except:
            break
        res = pow(n,3)
        if n <=0:
            continue
        if res != 1:
            base = pow(n,2) - n + 1
            temp = [i for i in range(base, res + 1) if i % 2 != 0]
            for i in range(len(temp)):
                num = temp[i]
                find = False
                for j in range(i + 1, len(temp)):
                    num += temp[j]
                    if num == res:
                        print("+".join([str(temp[k]) for k in range(i, j + 1)]))
                        find = True
                        break
                if find:
                    break
        else:
            print("1")

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值