【课后习题】高等数学第七版上第一章 函数与极限 第二节 数列的极限

该博客围绕数列极限相关习题展开,包含判断数列收敛发散、探讨数列有界性与收敛的关系、根据定义证明数列极限等内容,还涉及数列极限定义的正误判断及相关证明,如证明limn→∞∣un∣=∣a∣等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

习题1-2

1. 下列各题中,哪些数列收敛,哪些数列发散?对收敛数列,通过观察{ x n x_n xn}的变化趋势,

写出它们的极限:

(1) { 1 2 n } \left\{\frac{1}{2^n}\right\} {2n1};

(2) { ( − 1 ) n 1 n } \left\{(-1)^n \frac{1}{n}\right\} {(1)nn1};

(3) { 2 + 1 n 2 } \left\{2+\frac{1}{n^2}\right\} {2+n21};

(4) { n − 1 n + 1 } \left\{\frac{n-1}{n+1}\right\} {n+1n1};

(5) { n ( − 1 ) n } \left\{n(-1)^n\right\} {n(1)n};

(6) { 2 n − 1 3 n } \left\{\frac{2^n-1}{3^n}\right\} {3n2n1};

(7) { n − 1 n } \left\{n-\frac{1}{n}\right\} {nn1};

(8) { [ ( − 1 ) n + 1 ] n + 1 n } \left\{\left[(-1)^n+1\right] \frac{n+1}{n}\right\} {[(1)n+1]nn+1}.

在这里插入图片描述

2.

(1)数列的有界性是数列收敛的什么条件?

(2)无界数列是否一定发散?

(3)有界数列是否一定收敛?

解:(1)必要条件

​ (2)一定发散

​ (3)未必一定收敛,如数列 { ( − 1 ) n (-1)^n (1)n} 有界,但是它是发散的。

3.下列关于数列{ x n x_n xn}的极限是 a a a的定义,哪些是对的,哪些是错的?如果是对的,试说明理由;如果是错的,试给出一个反例.

(1)对于任意给定的$ ε$ > 0,存在 N ∈ N + N∈N_+ NN+ ,当 n > N n>N n>N时,不等式 x n − a < ε x_n - a < ε xna<ε成立;

(2)对于任意给定的 $ ε$ > 0,存在 N ∈ N + N∈N_+ NN+,当 n > N n>N n>N时,有无穷多项 x n x_n xn ,使不等式 | x n − a x_n - a xna| < ε ε ε成立;

在这里插入图片描述

(3)对于任意给定的$ ε$ > 0,存在 N ∈ N + N∈N_+ NN+,当 $n>N 时 , 不 等 式 ∣ 时,不等式| x_n-a$|< c ε c ε cε成立,其中c为某个正常数;

(4)对于任意给定的 m ∈ N + m ∈ N_+ mN+,存在 N ∈ N + N ∈ N_+ NN+,当 $n>N $时,不等式 $|x_n-a| $ < 1/m成立。

在这里插入图片描述

4. 设数列 { x n } \left\{x_n\right\} {xn} 的一般项 x n = 1 n cos ⁡ n π 2 x_n=\frac{1}{n} \cos \frac{n \pi}{2} xn=n1cos2nπ. 问 lim ⁡ n → ∞ x n = \lim _{n \rightarrow \infty} x_n= limnxn=? 求出 N N N, 使当 n > N n>N n>N 时,
x n x_n xn 与其极限之差 的绝对值小于正数 ε \varepsilon ε. 当 ε = 0.001 \varepsilon=0.001 ε=0.001 时, 求出数 N N N.

在这里插入图片描述

5. 根据数列极限的定义证明:

(1) lim ⁡ n → ∞ 1 n 2 = 0 \lim _{n \rightarrow \infty} \frac{1}{n^2}=0 limnn21=0;

(2) lim ⁡ n → ∞ 3 n + 1 2 n + 1 = 3 2 \lim _{n \rightarrow \infty} \frac{3 n+1}{2 n+1}=\frac{3}{2} limn2n+13n+1=23;

在这里插入图片描述

(3) lim ⁡ n → ∞ n 2 + a 2 n = 1 \lim _{n \rightarrow \infty} \frac{\sqrt{n^2+a^2}}{n}=1 limnnn2+a2 =1;

在这里插入图片描述

(4) lim ⁡ n → ∞ 0. 999 ⋯ 9 ⏟ n  个  = 1 \lim _{n \rightarrow \infty} 0 . \underbrace{999 \cdots 9}_{n \text { 个 }}=1 limn0.n   9999=1.

在这里插入图片描述

6. 若 lim ⁡ n → ∞ u n = a \lim _{n \rightarrow \infty} u_n=a limnun=a, 证明 lim ⁡ n → ∞ ∣ u n ∣ = ∣ a ∣ \lim _{n \rightarrow \infty}\left|u_n\right|=|a| limnun=a. 并举例说明: 如果数列 { ∣ x n ∣ } \left\{\left|x_n\right|\right\} {xn} 有极限, 但数列 { x n } \left\{x_n\right\} {xn} 末必有极限.

在这里插入图片描述

7. 设数列 { x n } \left\{x_n\right\} {xn} 有界, 又 lim ⁡ n → ∞ y n = 0 \lim _{n \rightarrow \infty} y_n=0 limnyn=0, 证明: lim ⁡ n → ∞ x n y n = 0 \lim _{n \rightarrow \infty} x_n y_n=0 limnxnyn=0.

在这里插入图片描述

8. 对于数列 { x n } \left\{x_n\right\} {xn}, 若 x 2 k − 1 → a ( k → ∞ ) , x 2 k → a ( k → ∞ ) x_{2 k-1} \rightarrow a(k \rightarrow \infty), x_{2 k} \rightarrow a(k \rightarrow \infty) x2k1a(k),x2ka(k), 证明: x n → a ( n → ∞ ) x_n \rightarrow a(n \rightarrow \infty) xna(n).

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ding Jiaxiong

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值