习题1-2
1. 下列各题中,哪些数列收敛,哪些数列发散?对收敛数列,通过观察{ x n x_n xn}的变化趋势,
写出它们的极限:
(1) { 1 2 n } \left\{\frac{1}{2^n}\right\} {2n1};
(2) { ( − 1 ) n 1 n } \left\{(-1)^n \frac{1}{n}\right\} {(−1)nn1};
(3) { 2 + 1 n 2 } \left\{2+\frac{1}{n^2}\right\} {2+n21};
(4) { n − 1 n + 1 } \left\{\frac{n-1}{n+1}\right\} {n+1n−1};
(5) { n ( − 1 ) n } \left\{n(-1)^n\right\} {n(−1)n};
(6) { 2 n − 1 3 n } \left\{\frac{2^n-1}{3^n}\right\} {3n2n−1};
(7) { n − 1 n } \left\{n-\frac{1}{n}\right\} {n−n1};
(8) { [ ( − 1 ) n + 1 ] n + 1 n } \left\{\left[(-1)^n+1\right] \frac{n+1}{n}\right\} {[(−1)n+1]nn+1}.
2.
(1)数列的有界性是数列收敛的什么条件?
(2)无界数列是否一定发散?
(3)有界数列是否一定收敛?
解:(1)必要条件
(2)一定发散
(3)未必一定收敛,如数列 { ( − 1 ) n (-1)^n (−1)n} 有界,但是它是发散的。
3.下列关于数列{ x n x_n xn}的极限是 a a a的定义,哪些是对的,哪些是错的?如果是对的,试说明理由;如果是错的,试给出一个反例.
(1)对于任意给定的$ ε$ > 0,存在 N ∈ N + N∈N_+ N∈N+ ,当 n > N n>N n>N时,不等式 x n − a < ε x_n - a < ε xn−a<ε成立;
(2)对于任意给定的 $ ε$ > 0,存在 N ∈ N + N∈N_+ N∈N+,当 n > N n>N n>N时,有无穷多项 x n x_n xn ,使不等式 | x n − a x_n - a xn−a| < ε ε ε成立;
(3)对于任意给定的$ ε$ > 0,存在 N ∈ N + N∈N_+ N∈N+,当 $n>N 时 , 不 等 式 ∣ 时,不等式| 时,不等式∣x_n-a$|< c ε c ε cε成立,其中c为某个正常数;
(4)对于任意给定的 m ∈ N + m ∈ N_+ m∈N+,存在 N ∈ N + N ∈ N_+ N∈N+,当 $n>N $时,不等式 $|x_n-a| $ < 1/m成立。
4. 设数列 { x n } \left\{x_n\right\} {xn} 的一般项 x n = 1 n cos n π 2 x_n=\frac{1}{n} \cos \frac{n \pi}{2} xn=n1cos2nπ. 问 lim n → ∞ x n = \lim _{n \rightarrow \infty} x_n= limn→∞xn=? 求出 N N N, 使当 n > N n>N n>N 时,
x n x_n xn 与其极限之差 的绝对值小于正数 ε \varepsilon ε. 当 ε = 0.001 \varepsilon=0.001 ε=0.001 时, 求出数 N N N.
5. 根据数列极限的定义证明:
(1) lim n → ∞ 1 n 2 = 0 \lim _{n \rightarrow \infty} \frac{1}{n^2}=0 limn→∞n21=0;
(2) lim n → ∞ 3 n + 1 2 n + 1 = 3 2 \lim _{n \rightarrow \infty} \frac{3 n+1}{2 n+1}=\frac{3}{2} limn→∞2n+13n+1=23;
(3) lim n → ∞ n 2 + a 2 n = 1 \lim _{n \rightarrow \infty} \frac{\sqrt{n^2+a^2}}{n}=1 limn→∞nn2+a2=1;
(4) lim n → ∞ 0. 999 ⋯ 9 ⏟ n 个 = 1 \lim _{n \rightarrow \infty} 0 . \underbrace{999 \cdots 9}_{n \text { 个 }}=1 limn→∞0.n 个 999⋯9=1.