习题2-5
1. 已知 y = x 3 − x y=x^3-x y=x3−x, 计算在 x = 2 x=2 x=2 处当 Δ x \Delta x Δx 分别等于 1 , 0.1 , 0.01 1,0.1,0.01 1,0.1,0.01 时的 Δ y \Delta y Δy 及 d y \mathrm{d} y dy.
2. 设函数 y = f ( x ) y=f(x) y=f(x) 的图形如下, 试在图(a)、(b)、(c)、(d) 中分别标出在点 x 0 x_0 x0 的 d y 、 Δ y \mathrm{d} y 、 \Delta y dy、Δy 及 Δ y − d y \Delta y-\mathrm{d} y Δy−dy, 并说明其正负.
解:
3. 求下列函数的微分:
(1) y = 1 x + 2 x y=\frac{1}{x}+2 \sqrt{x} y=x1+2x
(2) y = x sin 2 x y=x \sin 2 x y=xsin2x;
(3) y = x x 2 + 1 y=\frac{x}{\sqrt{x^2+1}} y=x2+1x
(4) y = ln 2 ( 1 − x ) y=\ln ^2(1-x) y=ln2(1−x)
(5) y = x 2 e 2 x y=x^2 \mathrm{e}^{2 x} y=x2e2x;
(6) y = e − x cos ( 3 − x ) y=\mathrm{e}^{-x} \cos (3-x) y=e−xcos(3−x);
(7) y = arcsin 1 − x 2 y=\arcsin \sqrt{1-x^2} y=arcsin1−x2;
(8) y = tan 2 ( 1 + 2 x 2 ) y=\tan ^2\left(1+2 x^2\right) y=tan2(1+2x2);
(9) y = arctan 1 − x 2 1 + x 2 y=\arctan \frac{1-x^2}{1+x^2} y=arctan1+x21−x2;
(10) s = A sin ( ω t + φ ) ( A 、 ω 、 φ s=A \sin (\omega t+\varphi) ( A 、 \omega 、 \varphi s=Asin(ωt+φ)(A、ω、φ 是常数) .
4. 将适当的函数填人下列括号内, 使等式成立:
(1) d ( ) = 2 d x \mathrm{d}(\quad)=2 \mathrm{~d} x d()=2 dx;
(2) d ( ) = 3 x d x \mathrm{d}(\quad)=3 x \mathrm{~d} x d()=3x dx;
(3) d ( ) = cos t d t \mathrm{d}(\quad)=\cos t \mathrm{~d} t d()=cost dt;
(4) d ( ) = sin ω x d x ( ω ≠ 0 ) \mathrm{d}(\quad)=\sin \omega x \mathrm{~d} x \quad(\omega \neq 0) d()=sinωx dx(ω=0);
(5) d ( ) = 1 1 + x d x \mathrm{d}(\quad)=\frac{1}{1+x} \mathrm{~d} x d()=1+x1 dx
(6) d ( ) = e − 2 x d x \mathrm{d}(\quad)=\mathrm{e}^{-2 x} \mathrm{~d} x d()=e−2x dx;
(7) d ( ) = 1 x d x \mathrm{d}(\quad)=\frac{1}{\sqrt{x}} \mathrm{~d} x d()=x1 dx;
(8) d ( ) = sec 2 3 x d x \mathrm{d}(\quad)=\sec ^2 3 x \mathrm{~d} x d()=sec23x dx
5. 如下图所示的电笕 KaTeX parse error: Undefined control sequence: \overparen at position 1: \̲o̲v̲e̲r̲p̲a̲r̲e̲n̲{A O B} 的长为 s s s, 跨度为 2 l 2 l 2l, 电缆的最低点 O O O 与杆顶连线 A B A B AB 的距离为 f f f, 则电缆长可按下面公式计算
s = 2 l ( 1 + 2 f 2 3 l 2 ) , s=2 l\left(1+\frac{2 f^2}{3 l^2}\right) \text {, } s=2l(1+3l22f2),
当 f f f 变化了 Δ f \Delta f Δf 时, 电缆长的变化约为多少?
6. 设扇形的圆心角 α = 6 0 ∘ \alpha=60^{\circ} α=60∘, 半径 R = 100 c m R=100 \mathrm{~cm} R=100 cm 【如下图】.
如果 R R R 不变, α \alpha α 减少 3 0 ′ 30^{\prime} 30′, 问扇形面积大约改变了 多少? 又如果 α \alpha α 不变, R R R 增加 1 c m 1 \mathrm{~cm} 1 cm, 问扇形面积大约改变 了多少?
7. 计算下列三角函数值的近似值:
(1) cos 2 9 ∘ \cos 29^{\circ} cos29∘;
(2) tan 13 6 ∘ \tan 136^{\circ} tan136∘.
8. 计算下列反三角函数值的近似值:
(1) arcsin 0.5002 \arcsin 0.5002 arcsin0.5002;
(2) arccos 0.4995 \arccos 0.4995 arccos0.4995.
9. 当 ∣ x ∣ |x| ∣x∣ 较小时, 证明下列近似公式:
(1) tan x ≈ x ( x \tan x \approx x(x tanx≈x(x 是角的弧度值);
(2) ln ( 1 + x ) ≈ x \ln (1+x) \approx x ln(1+x)≈x;
(3) 1 + x n ≈ 1 + 1 n x \sqrt[n]{1+x} \approx 1+\frac{1}{n} x n1+x≈1+n1x;
(4) e x ≈ 1 + x \mathrm{e}^x \approx 1+x ex≈1+x.
并计算 tan 4 5 ′ \tan 45^{\prime} tan45′ 和 ln 1.002 \ln 1.002 ln1.002 的近似值.
10. 计算下列各根式的近似值:
(1) 996 3 \sqrt[3]{996} 3996;
(2) 65 6 \sqrt[6]{65} 665.