习题4-4
求下列不定积分:
- ∫ x 3 x + 3 d x \int \frac{x^3}{x+3} \mathrm{~d} x ∫x+3x3 dx.
- ∫ 2 x + 3 x 2 + 3 x − 10 d x \int \frac{2 x+3}{x^2+3 x-10} \mathrm{~d} x ∫x2+3x−102x+3 dx.
- ∫ x + 1 x 2 − 2 x + 5 d x \int \frac{x+1}{x^2-2 x+5} \mathrm{~d} x ∫x2−2x+5x+1 dx.
- ∫ d x x ( x 2 + 1 ) \int \frac{\mathrm{d} x}{x\left(x^2+1\right)} ∫x(x2+1)dx.
- ∫ 3 x 3 + 1 d x \int \frac{3}{x^3+1} \mathrm{~d} x ∫x3+13 dx.
- ∫ x 2 + 1 ( x + 1 ) 2 ( x − 1 ) d x \int \frac{x^2+1}{(x+1)^2(x-1)} \mathrm{d} x ∫(x+1)2(x−1)x2+1dx.
- ∫ x d x ( x + 1 ) ( x + 2 ) ( x + 3 ) \int \frac{x \mathrm{~d} x}{(x+1)(x+2)(x+3)} ∫(x+1)(x+2)(x+3)x dx.
- ∫ x 5 + x 4 − 8 x 3 − x d x \int \frac{x^5+x^4-8}{x^3-x} \mathrm{~d} x ∫x3−xx5+x4−8 dx.
- ∫ d x ( x 2 + 1 ) ( x 2 + x ) \int \frac{\mathrm{d} x}{\left(x^2+1\right)\left(x^2+x\right)} ∫(x2+1)(x2+x)dx.
- ∫ 1 x 4 − 1 d x \int \frac{1}{x^4-1} \mathrm{~d} x ∫x4−11 dx.
- ∫ d x ( x 2 + 1 ) ( x 2 + x + 1 ) \int \frac{\mathrm{d} x}{\left(x^2+1\right)\left(x^2+x+1\right)} ∫(x2+1)(x2+x+1)dx.
- ∫ ( x + 1 ) 2 ( x 2 + 1 ) 2 d x \int \frac{(x+1)^2}{\left(x^2+1\right)^2} \mathrm{~d} x ∫(x2+1)2(x+1)2 dx.
- ∫ − x 2 − 2 ( x 2 + x + 1 ) 2 d x \int \frac{-x^2-2}{\left(x^2+x+1\right)^2} \mathrm{~d} x ∫(x2+x+1)2−x2−2 dx.
- ∫ d x 3 + sin 2 x \int \frac{\mathrm{d} x}{3+\sin ^2 x} ∫3+sin2xdx.
- ∫ d x 3 + cos x \int \frac{\mathrm{d} x}{3+\cos x} ∫3+cosxdx.
- ∫ d x 2 + sin x \int \frac{\mathrm{d} x}{2+\sin x} ∫2+sinxdx.
- ∫ d x 1 + sin x + cos x \int \frac{\mathrm{d} x}{1+\sin x+\cos x} ∫1+sinx+cosxdx.
- ∫ d x 2 sin x − cos x + 5 \int \frac{\mathrm{d} x}{2 \sin x-\cos x+5} ∫2sinx−cosx+5dx.
- ∫ d x 1 + x + 1 3 \int \frac{\mathrm{d} x}{1+\sqrt[3]{x+1}} ∫1+3x+1dx.
- ∫ ( x ) 3 − 1 x + 1 d x \int \frac{(\sqrt{x})^3-1}{\sqrt{x}+1} \mathrm{~d} x ∫x+1(x)3−1 dx.
- ∫ x + 1 − 1 x + 1 + 1 d x \int \frac{\sqrt{x+1}-1}{\sqrt{x+1}+1} \mathrm{~d} x ∫x+1+1x+1−1 dx.
-
∫ d x x + x 4 \int \frac{\mathrm{d} x}{\sqrt{x}+\sqrt[4]{x}} ∫x+4xdx.
-
∫ 1 − x 1 + x d x x \int \sqrt{\frac{1-x}{1+x}} \frac{\mathrm{d} x}{x} ∫1+x1−xxdx.
- ∫ d x ( x + 1 ) 2 ( x − 1 ) 4 3 \int \frac{\mathrm{d} x}{\sqrt[3]{(x+1)^2(x-1)^4}} ∫3(x+1)2(x−1)4dx.