【课后习题】高等数学第七版上第七章 微分方程 第二节 可分离变量的微分方程

习题7-2

1. 求下列微分方程的通解:

(1) x y ′ − y ln ⁡ y = 0 x y^{\prime}-y \ln y=0 xyylny=0;

(2) 3 x 2 + 5 x − 5 y ′ = 0 3 x^2+5 x-5 y^{\prime}=0 3x2+5x5y=0;

在这里插入图片描述

(3) 1 − x 2 y ′ = 1 − y 2 \sqrt{1-x^2} y^{\prime}=\sqrt{1-y^2} 1x2 y=1y2 ;

(4) y ′ − x y ′ = a ( y 2 + y ′ ) y^{\prime}-x y^{\prime}=a\left(y^2+y^{\prime}\right) yxy=a(y2+y);

在这里插入图片描述

(5) sec ⁡ 2 x tan ⁡ y   d x + sec ⁡ 2 y tan ⁡ x   d y = 0 \sec ^2 x \tan y \mathrm{~d} x+\sec ^2 y \tan x \mathrm{~d} y=0 sec2xtany dx+sec2ytanx dy=0;

(6) d y   d x = 1 0 x + y \frac{\mathrm{d} y}{\mathrm{~d} x}=10^{x+y}  dxdy=10x+y;

在这里插入图片描述

(7) ( e x + 3 − e x ) d x + ( e x + y + e y ) d y = 0 \left(\mathrm{e}^{x+3}-\mathrm{e}^x\right) \mathrm{d} x+\left(\mathrm{e}^{x+y}+\mathrm{e}^y\right) \mathrm{d} y=0 (ex+3ex)dx+(ex+y+ey)dy=0;

(8) cos ⁡ x sin ⁡ y   d x + sin ⁡ x cos ⁡ y   d y = 0 \cos x \sin y \mathrm{~d} x+\sin x \cos y \mathrm{~d} y=0 cosxsiny dx+sinxcosy dy=0;

在这里插入图片描述

(9) ( y + 1 ) 2 d y   d x + x 3 = 0 (y+1)^2 \frac{\mathrm{d} y}{\mathrm{~d} x}+x^3=0 (y+1)2 dxdy+x3=0;

(10) y   d x + ( x 2 − 4 x ) d y = 0 y \mathrm{~d} x+\left(x^2-4 x\right) \mathrm{d} y=0 y dx+(x24x)dy=0.

在这里插入图片描述

2. 求下列微分方程满足所给初值条件的特解:

(1) y ′ = e 2 x − 1 , y ∣ x = 0 = 0 y^{\prime}=\mathrm{e}^{2 x-1},\left.y\right|_{x=0}=0 y=e2x1,yx=0=0

(2) cos ⁡ x sin ⁡ y   d y = cos ⁡ y sin ⁡ x   d x , y ∣ x = 0 = π 4 \cos x \sin y \mathrm{~d} y=\cos y \sin x \mathrm{~d} x,\left.y\right|_{x=0}=\frac{\pi}{4} cosxsiny dy=cosysinx dx,yx=0=4π;

在这里插入图片描述

(3) y ′ sin ⁡ x = y ln ⁡ y , y ∣ x = π 2 = e y^{\prime} \sin x=y \ln y,\left.y\right|_{x=\frac{\pi}{2}}=\mathrm{e} ysinx=ylny,yx=2π=e;

(4) cos ⁡ y   d x + ( 1 + e − x ) sin ⁡ y   d y = 0 , y ∣ x = 0 = π 4 \cos y \mathrm{~d} x+\left(1+\mathrm{e}^{-x}\right) \sin y \mathrm{~d} y=0,\left.y\right|_{x=0}=\frac{\pi}{4} cosy dx+(1+ex)siny dy=0,yx=0=4π;

在这里插入图片描述

(5) x   d y + 2 y   d x = 0 , y ∣ x = 2 = 1 x \mathrm{~d} y+2 y \mathrm{~d} x=0,\left.y\right|_{x=2}=1 x dy+2y dx=0,yx=2=1.

在这里插入图片描述

3. 有一盛满了水的圆锥形漏斗, 高为 10   c m 10 \mathrm{~cm} 10 cm, 顶角为 6 0 ∘ 60^{\circ} 60, 漏斗下面有面积为 0.5   c m 2 0.5 \mathrm{~cm}^2 0.5 cm2 的 孔, 求水面高度变化的规律及水流完所需的时间.

在这里插入图片描述

在这里插入图片描述

4. 质量为 1   g 1 \mathrm{~g} 1 g 的质点受外力作用做直线运动, 这外力和时间成正比, 和质点运动的速度 成反比. 在 t = 10   s t=10 \mathrm{~s} t=10 s 时, 速度等于 50   c m / s 50 \mathrm{~cm} / \mathrm{s} 50 cm/s, 外力为 4   g ⋅ c m / s 2 4 \mathrm{~g} \cdot \mathrm{cm} / \mathrm{s}^2 4 gcm/s2, 问从运动开始经过了 1   m i n 1 \mathrm{~min} 1 min 后的 速度是多少?

在这里插入图片描述

5. 镭的衰变有如下的规律: 镭的衰变速度与它的现存量 R R R 成正比. 由经验材料得知, 镭 经过 1600 年后, 只余原始量 R 0 R_0 R0 的一半. 试求镭的现存量 R R R 与时间 t t t 的函数关系.

在这里插入图片描述

6. 一曲线通过点 ( 2 , 3 ) (2,3) (2,3), 它在两坐标轴间的任一切线线段均被切点所平分, 求这曲线方程.

在这里插入图片描述

7. 小船从河边点 O O O 处出发驶向对岸 (两岸为平行直线). 设船速为 a a a, 船行方向始终与河 岸垂直, 又设河宽为 h h h, 河中任一点处的水流速度与该点到两岸距离的乘积成正比 (比例系数 为 k ) k) k). 求小船的航行路线.

在这里插入图片描述

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ding Jiaxiong

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值