习题7-2
1. 求下列微分方程的通解:
(1) x y ′ − y ln y = 0 x y^{\prime}-y \ln y=0 xy′−ylny=0;
(2) 3 x 2 + 5 x − 5 y ′ = 0 3 x^2+5 x-5 y^{\prime}=0 3x2+5x−5y′=0;
(3) 1 − x 2 y ′ = 1 − y 2 \sqrt{1-x^2} y^{\prime}=\sqrt{1-y^2} 1−x2y′=1−y2;
(4) y ′ − x y ′ = a ( y 2 + y ′ ) y^{\prime}-x y^{\prime}=a\left(y^2+y^{\prime}\right) y′−xy′=a(y2+y′);
(5) sec 2 x tan y d x + sec 2 y tan x d y = 0 \sec ^2 x \tan y \mathrm{~d} x+\sec ^2 y \tan x \mathrm{~d} y=0 sec2xtany dx+sec2ytanx dy=0;
(6) d y d x = 1 0 x + y \frac{\mathrm{d} y}{\mathrm{~d} x}=10^{x+y} dxdy=10x+y;
(7) ( e x + 3 − e x ) d x + ( e x + y + e y ) d y = 0 \left(\mathrm{e}^{x+3}-\mathrm{e}^x\right) \mathrm{d} x+\left(\mathrm{e}^{x+y}+\mathrm{e}^y\right) \mathrm{d} y=0 (ex+3−ex)dx+(ex+y+ey)dy=0;
(8) cos x sin y d x + sin x cos y d y = 0 \cos x \sin y \mathrm{~d} x+\sin x \cos y \mathrm{~d} y=0 cosxsiny dx+sinxcosy dy=0;
(9) ( y + 1 ) 2 d y d x + x 3 = 0 (y+1)^2 \frac{\mathrm{d} y}{\mathrm{~d} x}+x^3=0 (y+1)2 dxdy+x3=0;
(10) y d x + ( x 2 − 4 x ) d y = 0 y \mathrm{~d} x+\left(x^2-4 x\right) \mathrm{d} y=0 y dx+(x2−4x)dy=0.
2. 求下列微分方程满足所给初值条件的特解:
(1) y ′ = e 2 x − 1 , y ∣ x = 0 = 0 y^{\prime}=\mathrm{e}^{2 x-1},\left.y\right|_{x=0}=0 y′=e2x−1,y∣x=0=0 ;
(2) cos x sin y d y = cos y sin x d x , y ∣ x = 0 = π 4 \cos x \sin y \mathrm{~d} y=\cos y \sin x \mathrm{~d} x,\left.y\right|_{x=0}=\frac{\pi}{4} cosxsiny dy=cosysinx dx,y∣x=0=4π;
(3) y ′ sin x = y ln y , y ∣ x = π 2 = e y^{\prime} \sin x=y \ln y,\left.y\right|_{x=\frac{\pi}{2}}=\mathrm{e} y′sinx=ylny,y∣x=2π=e;
(4) cos y d x + ( 1 + e − x ) sin y d y = 0 , y ∣ x = 0 = π 4 \cos y \mathrm{~d} x+\left(1+\mathrm{e}^{-x}\right) \sin y \mathrm{~d} y=0,\left.y\right|_{x=0}=\frac{\pi}{4} cosy dx+(1+e−x)siny dy=0,y∣x=0=4π;
(5) x d y + 2 y d x = 0 , y ∣ x = 2 = 1 x \mathrm{~d} y+2 y \mathrm{~d} x=0,\left.y\right|_{x=2}=1 x dy+2y dx=0,y∣x=2=1.