互联网各领域资料分享专区(不定期更新):
在AI领域流传着一个惊人的论断:"只要足够复杂,神经网络可以逼近任何数学函数"。这究竟是天方夜谭,还是确有科学依据?
一、震惊学术界的"通用近似定理"
1989年,一篇名为《Approximation by Superpositions of a Sigmoidal Function》的论文横空出世。作者George Cybenko证明了一个颠覆认知的结论:
"仅需一个足够宽的单隐藏层神经网络,使用Sigmoid激活函数,就能以任意精度逼近任何连续函数"
这就是著名的通用近似定理(Universal Approximation Theorem)。后续研究进一步扩展:ReLU等非线性激活函数同样适用该定理。
定理核心思想
神经网络通过多层非线性变换,能将输入空间扭曲、折叠,最终用隐藏层的神经元组合出无数个"函数片段"。这些片段像乐高积木般拼接,理论上可以构造出任意复杂的函数形态。