神经网络为什么能成为“万能函数拟合器“

互联网各领域资料分享专区(不定期更新):

Sheet


在AI领域流传着一个惊人的论断:"只要足够复杂,神经网络可以逼近任何数学函数"。这究竟是天方夜谭,还是确有科学依据?


一、震惊学术界的"通用近似定理"

1989年,一篇名为《Approximation by Superpositions of a Sigmoidal Function》的论文横空出世。作者George Cybenko证明了一个颠覆认知的结论:

"仅需一个足够宽的单隐藏层神经网络,使用Sigmoid激活函数,就能以任意精度逼近任何连续函数"

这就是著名的通用近似定理(Universal Approximation Theorem)。后续研究进一步扩展:ReLU等非线性激活函数同样适用该定理

定理核心思想

神经网络通过多层非线性变换,能将输入空间扭曲、折叠,最终用隐藏层的神经元组合出无数个"函数片段"。这些片段像乐高积木般拼接,理论上可以构造出任意复杂的函数形态。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

互联网之路.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值