【Codeforces 1217F】Forced Online Queries Problem(分块维护连通性)

题目链接

我记得很久以前写过一个离线的 O ( m l o g 2 n ) O(mlog^2n) O(mlog2n)的做法,是向线段树内添加每条边的存在时间,然后在线段树上跑,用可撤销的按秩合并并查集维护连通性。

其实离线还有一个分块做法,也用到了可撤销的并查集。如果有一系列的加边/删边操作,我们可以用set维护边的存在性,从而转化为单纯的加边操作,而单纯的加边操作可以用并查集维护连通性。我们把所有操作分块,每块 P P P个操作。处理第 i i i块时,先扫一遍块 [ 1 , i − 1 ] [1,i-1] [1,i1]内的添加/删除操作,这些操作分成两类:
1.操作的边是在第 i i i块里没有进行添加/删除操作的边
2.操作的边是在第 i i i块里进行了添加/删除操作的边

直接用第一类操作构建出并查集 U U U。然后对于第 i i i块内的询问,用“第二类操作+第 i i i块内在此询问前添加/删除的操作”更新并查集,回答询问,然后将并查集撤销至 U U U的状态。

一共有 m / P m/P m/P块,考虑这样做的复杂度:
1.在每一块时重置并查集, O ( n ∗ m / P ) O(n*m/P) O(nm/P)
2.第一类操作最多 m m m条边,构建并查集, O ( m ∗ l o g n ∗ m / P ) O(m*logn*m/P) O(mlognm/P)
3.最多有 m m m个询问,每次回答询问时,显然第二类边不超过 P P P条,一块内之前操作的边也不超过 P P P条, O ( m ∗ P ∗ l o g n ) O(m*P*logn) O(mPlogn)

P = m P=\sqrt{m} P=m ,复杂度即为 O ( m m ∗ l o g n ) O(m\sqrt{m}*logn) O(mm logn)。事实上我们发现1的复杂度是满的,2,3的复杂度是相互制约的,因此 P P P取得略大一点会跑得更快。

 
而对于这道离线的问题,我们把边的分类改成这样:
1.操作的边是在第 i i i块里不可能进行添加/删除操作的边
2.操作的边是在第 i i i块里有可能进行了添加/删除操作的边

每条边有两种可能,因此只不过是第二类边的条数上限从 P P P变成了 2 P 2P 2P,对复杂度无影响,且写起来只比离线多了一点点处理。

#define pr pair<int,int>
#define mp make_pair
#define fr first
#define sc second
const int N=200005;
const int B=5000;
int n,q;
int tp[N],ans[N];
pr ed[N][2];
set<pr>may,rep,onc;
namespace DSU
{
  int f[N],sz[N],st[N][3],top,btm;
  int find(int x) {while(f[x]!=x) x=f[x];return x;}
  bool ask(pr E) {return find(E.fr)==find(E.sc);}
  void undo( ) { while(top!=btm) sz[st[top][0]]=st[top][1],f[st[top][2]]=st[top][2],top--;}
  void Ins(pr E)
  {
    int x=find(E.fr),y=find(E.sc);
    if(x==y) return;
    if(sz[x]<sz[y]) swap(x,y);
    st[++top][0]=x;st[top][1]=sz[x];st[top][2]=y;
    f[y]=x;sz[x]+=sz[y];
  }
  void Rebuild( )
  {
    int i,j;
    top=0;
    for(i=1;i<=n;i++) f[i]=i,sz[i]=1;
    for(auto &x:onc) Ins(x);
    btm=top;
  }
}
using namespace DSU;
void addrep(pr E) {if(rep.find(E)!=rep.end( )) rep.erase(E);else rep.insert(E);}
void addonc(pr E) {if(onc.find(E)!=onc.end( )) onc.erase(E);else onc.insert(E);}
int main( )
{
  int i,j,L,R,x,y;pr E;
  n=read( );q=read( );
  for(i=1;i<=q;i++)
    {
      L=i;R=min(i+B,q);i=R;
      may.clear( );rep.clear( );onc.clear( );
      for(j=L;j<=R;j++)
		{
		  read(tp[j]);read(x);read(y);
		  if(x<y) swap(x,y);ed[j][0]=mp(x,y);
		  x=x%n+1;y=y%n+1;
		  if(x<y) swap(x,y);ed[j][1]=mp(x,y);
		  may.insert(ed[j][0]);may.insert(ed[j][1]);
		}
      for(j=1;j<L;j++)
		{
		  if(tp[j]==2) continue;
		  E=ed[j][ans[j]];
		  if(may.find(E)!=may.end( )) addrep(E);
		  else addonc(E);
		}
      Rebuild( );
      for(j=L;j<=R;j++)
		{
		  if(tp[j]==1)
		    {
		      ans[j]=ans[j-1];E=ed[j][ans[j]];
		      addrep(E);
		    }
		  else
		    {
		      E=ed[j][ans[j-1]];
		      undo( );
		      for(auto &x:rep) Ins(x);
		      ans[j]=ask(E);
		    }
		}     
    }
  for(i=1;i<=q;i++)
    if(tp[i]==2) printf("%d",ans[i]);
  return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值