Argo 数据集下载地址-具体到每天数据(包含数据说明书)

将所用的Argo数据下载地址和一键下载方式分享给大家

首先进入Argo官网:
Argo

在此页面中找到如下箭头标记处,并点击进入:
在这里插入图片描述之后,如下页面点击箭头处,进入另一页面:
在这里插入图片描述
接着在页面中点击他的下载地址:
在这里插入图片描述在这里插入图片描述上图中,红框内既数据下载的地址,一般选择第三个打开进入:
在这里插入图片描述其中,latest_data中存储的是今年的数据,并不完整
geo中既需要的三个大洋的从1997.07-2020.12.31存储的每日数据。
在这里插入图片描述选择需要的年份数据进行下载即可。可使用火狐浏览器中的插件进行一键下载。
详情见:
火狐一键下载页面文件

		                            
                      一个努力学习python的海洋小白
                      水平有限,欢迎指正!!!
                      欢迎评论、收藏。


<think>好的,用户想了解如何读取Argo数据,特别是文件格式及工具。首先,我需要回忆关于Argo浮标数据的基本信息。Argo数据通常以NetCDF格式存储,这是地球科学中常用的格式。NetCDF需要特定的工具来读取,比如Python中的xarray或netCDF4库。 接下来,用户提到的引用里有关于argopy库的信息,引用2和引用4提到了使用argopy和Argo CD。Argopy似乎是专门为Argo数据设计的Python工具,应该能简化数据获取和处理流程。需要确认argopy的用法,比如使用DataFetcher来获取区域数据并转换为xarray数据集,这样用户可以直接处理数据。 另外,引用3提到了IcePyx,虽然主要用于ICESat-2数据,但可能用户有混淆,这里需要明确区分。不过引用2中的示例代码是正确的,所以重点放在argopy上。 文件格式方面,Argo数据分为实时数据和延时模式数据,分别有不同的处理流程和质量控制。用户可能需要知道这两种数据的区别以及如何访问它们。 还需要考虑用户可能的技能水平,是否需要从安装库开始指导。例如,安装argopy可能需要使用pip,并导入相应的模块。同时,处理NetCDF文件可能需要基础的Python数据处理库,如pandas和xarray。 用户的问题还可能涉及到数据具体结构,比如变量名、维度等,可能需要指导如何查看数据集中的变量和属性。此外,引用4提到的Argo CD是关于持续部署的工具,可能与数据读取无关,需要指出避免混淆。 最后,生成相关问题时,应围绕Argo数据的处理工具、不同模式数据的区别、质量控制方法以及可视化步骤展开,帮助用户进一步探索。</think>### 如何读取Argo数据 #### 1. **Argo数据文件格式** Argo浮标数据主要采用**NetCDF**格式存储,这是地球科学领域通用的自描述二进制格式,支持多维数据与元信息存储。数据分为两类: - **实时数据(Real-time)**: 经过初步质量控制,延迟不超过24小时,文件后缀为`_R`[^1] - **延时模式数据(Delayed-mode)**: 经过人工严格校正,质量更高,文件后缀为`_D`[^1] #### 2. **核心读取工具** ##### 方法一:使用Python库`argopy` 专为Argo数据设计的工具包,提供简洁API: ```python from argopy import DataFetcher # 获取西太平洋某区域2011年上半年的温盐数据 argo_loader = DataFetcher().region([-75, -45, 20, 30, 0, 100, '2011-01', '2011-06']) ds = argo_loader.to_xarray() # 转换为xarray数据集 print(ds['TEMP'].sel(N_PROF=0, PRES=10).values) # 读取首个剖面10分巴层的温度值 ``` 通过`.region()`指定经纬度、深度和时间范围,`.to_xarray()`可直接获得多维数组结构[^2] ##### 方法二:直接解析NetCDF文件 适用于本地存储的Argo数据文件: ```python import xarray as xr ds = xr.open_dataset('argo_data.nc') df = ds[['PSAL', 'TEMP', 'PRES']].to_dataframe() # 提取盐度、温度、压力到DataFrame ``` #### 3. **数据层级结构** 典型Argo数据集包含以下维度: ``` Dimensions: N_PROF: 剖面数量 PRES: 压力层级 N_PARAM: 测量参数数量 Variables: LATITUDE (N_PROF) → 纬度坐标 LONGITUDE (N_PROF) → 经度坐标 TIME (N_PROF) → UTC时间戳 PRES (PRES) → 压力值(dbar) TEMP (N_PROF, PRES) → 温度(°C) PSAL (N_PROF, PRES) → 实用盐度 ``` #### 4. **质量控制关键步骤 ```python # 筛选质量标志为1(最佳数据)的记录 clean_data = ds.where(ds['TEMP_QC'] == 1).dropna(dim='N_PROF', how='all') ```
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

简朴-ocean

继续进步

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值