wrf模式学习记录--使用ERA5数据驱动WRF模式三层嵌套:数据下载以及模式处理

本文详细介绍了如何下载ERA5数据,包括注册获取CDSAPIkey,安装python库,以及下载不同维度的数据。接着,文章阐述了如何利用下载的ERA5数据运行WRF模式,涉及WPS前处理、ungrid、WRF后处理的配置和步骤。对于WRF模式的配置,包括namelist的修改和各程序的执行。
摘要由CSDN通过智能技术生成

下载ERA5数据

从官网上下载ERA5主要分为三步:

  1. 官网注册账号,获取CDS API key。
  2. 安装python相关的库。
  3. 复制粘贴代码,下载数据。

注册账户获取密钥

点击网址:ERA5注册网址,右上角点击注册账户,一般使用教育邮箱
在这里插入图片描述
注册完成后登录,然后还是在这个网址:获取key密钥,点击下面图中的红色框,
在这里插入图片描述
然后,下图红框内就是你的密钥,将其全部复制下来:
在这里插入图片描述

  • 如果你是Linux系统,就在你的系统用户目录下创建一个.cdsapirc的文件,将刚刚复制的内容粘贴到该文件下:
    在这里插入图片描述
    在这里插入图片描述
  • 如果你是windows系统,就在c盘/用户/用户名 这个目录下创建一个 创建一个.cdsapirc文件。可以先建立一个txt文件,将内容粘贴进去后再改文件名为.cdsapirc

安装python的cdsapi库

我这里是在Linux系统下, 直接在你的python环境下使用命令:conda install cdsapi
即可。window下应该同理。

获取ERA5数据

下载地址在官网上搜索你要下载的数据类型:
在这里插入图片描述
点击进入后勾选你需要的参数、时间、变量等。
在这里插入图片描述

然后到最后,选择红框内显示下载代码
在这里插入图片描述
在这里插入图片描述
将代码复制到你的python脚本中,运行脚本即可下载。

运行WRF模式

基于上述方式,我们可以通过下载ERA5数据制作WRF模式的初始场,运行wrf模式。其中,需要下载的ERA5的数据如下所示:

3D数据:

ERA5 monthly averaged data on pressure levels from 1979 to present**:Monthly averaged reanalysis by hour of day**

变量:

  • Geopotential
  • Relative humidity
  • U-component of wind
  • V-component of wind
  • Temperature

压力层

所有

year

2022

month

02

day

17-18

Pressure level data (download.py)

import cdsapi

c = cdsapi.Client()

c.retrieve(
    'reanalysis-era5-pressure-levels',
    {
        'product_type': 'reanalysis',
        'format': 'grib',
        'variable': [
            'geopotential', 'relative_humidity', 'temperature','specific_humidity',
            'u_component_of_wind', 'v_component_of_wind','vertical_velocity'
        ],
        'pressure_level': [
            '1', '2', '3',
            '5', '7', '10',
            '20', '30', '50',
            '70', '100', '125',
            '150', '175', '200',
            '225', '250', '300',
            '350', '400', '450',
            '500', '550', '600',
            '650', '700', '750',
            '775', '800', '825',
            '850', '875', '900',
            '925', '950', '975',
            '1000',
        ],
        'year': '2022',
        'month': '02',
        'day': ['17','18',],
        'time': [
            '00:00', '01:00', '02:00',
            '03:00', '04:00', '05:00',
            '06:00', '07:00', '08:00',
            '09:00', '10:00', '11:00',
            '12:00', '13:00', '14:00',
            '15:00', '16:00', '17:00',
            '18:00', '19:00', '20:00',
            '21:00', '22:00', '23:00',
        ],
    
    },
    '/ERA5_data/ERA5-2022-02_17-18_pl.grib')

2D数据:

Product type

Monthly averaged reanalysis by hour of day

Variable

  • 10m u-component of wind

  • 10m v-component of wind

  • Mean sea level pressure

  • Sea surface temperature

  • Surface pressure

  • 2m temperature

  • Soil data (temperature and moisture) and soil height

    year

    2021

    month

02

day

17-18

Single level data (down.py)

import cdsapi

c = cdsapi.Client()

c.retrieve(
    'reanalysis-era5-single-levels',
    {
        'product_type': 'reanalysis',
        'format': 'grib',
        'variable': [
         '10m_u_component_of_wind','10m_v_component_of_wind','2m_dewpoint_temperature',
            '2m_temperature','forecast_albedo',
            'forecast_surface_roughness','high_cloud_cover',
            'land_sea_mask','low_cloud_cover',
            'mean_sea_level_pressure','medium_cloud_cover',
            'sea_ice_cover','sea_surface_temperature',
            'skin_temperature','snow_albedo',
            'snow_depth','surface_pressure',
            'total_cloud_cover',
            'total_column_water','total_column_water_vapour',
            'soil_temperature_level_1','soil_temperature_level_2',
            'soil_temperature_level_3','soil_temperature_level_4','volumetric_soil_water_layer_1','volumetric_soil_water_layer_2',
            'volumetric_soil_water_layer_3','volumetric_soil_water_layer_4'
        ],
        'year': '2022',
        'month': '02',
        'day': ['17','18',],
        'time': [
            '00:00', '01:00', '02:00',
            '03:00', '04:00', '05:00',
            '06:00', '07:00', '08:00',
            '09:00', '10:00', '11:00',
            '12:00', '13:00', '14:00',
            '15:00', '16:00', '17:00',
            '18:00', '19:00', '20:00',
            '21:00', '22:00', '23:00',
        ],
    },
    '/ERA5_data/ERA5-2022-02_17-18-sl.grib')

具体细节的运行可以看这篇博客:
https://blog.csdn.net/weixin_44237337/article/details/123152177?spm=1001.2014.3001.5501
下面只介绍不同的地方

WPS前处理

链接Vtable这里需要进行修改,如下:

cd  /Users/WRF/ERA_practice/
ln -sf ungrib/Variable_Tables/Vtable.ECMWF  Vtable

然后同样是链接你下载的ERA5数据:

./link_grib.csh  ../ERA5_data/ERA5-2022-02_17-18*

ungrid
因为我这个里是三层嵌套,需要修改namelist.wps后,再运行ungrid程序

&share
 wrf_core = 'ARW',
 start_date = '2022-02_17_00:00:00','2022-02_17_00:00:00','2022-02_17_00:00:00',
 end_date = '2022-02_17_06:00:00','2022-02_17_06:00:00','2022-02_17_06:00:00',
 interval_seconds = 10800,
 max_dom = 3,
 io_form_geogrid = 2, 
 opt_output_from_geogrid_path = '/WRF/ERA5_pactice/',
/

./
&geogrid

 parent_id         =   1,      1,      2,
 parent_grid_ratio =   1,      3,      3,
 i_parent_start    =   1,     21,    27,
 j_parent_start    =   1,     21,    26,
 e_we                     = 247,      574,    1471,
 e_sn                     = 158,      370,      889,
 
 geog_data_res     = 'default','default','default',
 dx = 36000,
 dy = 36000,
 map_proj  = 'mercator',
 ref_lat   =  15.00,
 ref_lon   = 0.00,
 truelat1  =  10.0,
 truelat2  =  20.0,
 stand_lon =0.00,
  geog_data_path = '/Software/Models/WRF/WPS_GEOG',
 
 !
 !!!!!!!!!!!!!!!!!!!!!!!!!!!! IMPORTANT NOTE !!!!!!!!!!!!!!!!!!!!!!!!!!!!
 ! The default datasets used to produce the MAXSNOALB and ALBEDO12M
 ! fields have changed in WPS v4.0. These fields are now interpolated
 ! from MODIS-based datasets.
 !
 ! To match the output given by the default namelist.wps in WPS v3.9.1,
 ! the following setting for geog_data_res may be used:
 !
 ! geog_data_res = 'maxsnowalb_ncep+albedo_ncep+default', 'maxsnowalb_ncep+albedo_ncep+default', 
 !
 !!!!!!!!!!!!!!!!!!!!!!!!!!!! IMPORTANT NOTE !!!!!!!!!!!!!!!!!!!!!!!!!!!!
 !

/

&ungrib
 out_format = 'WPS',
 prefix = '/WRF/ERA5_pactice/FILE',
/

&metgrid
 fg_name = 'FILE',
 io_form_metgrid = 2, 
 opt_output_from_metgrid_path = '/WRF/ERA5_pactice/',
/

下面正常运行./geogrid.exe./metgrid.exe

WRF后处理

修改一下namelist.input,与wps中的一致:

 &time_control
 run_days                            = 0,
 run_hours                           = 06,
 run_minutes                         = 0,
 run_seconds                         = 0,
 start_year                          = 2022, 2022, 2022,
 start_month                         = 02,   02,   02,
 start_day                           = 17,   17,   17,
 start_hour                          = 00,   00,   00,
 
 end_year                            = 2022, 2022, 2022,
 end_month                           = 02,   02,   02,
 end_day                             = 17,   17,   17,
 end_hour                            = 06,   06,   06,
 interval_seconds                    = 10800,
 input_from_file                     = .true.,.true.,.true.,
 history_interval                    = 60,  60,   60,
 frames_per_outfile                  = 1000, 1000, 1000,
 restart                             = .false.,
 restart_interval                    = 1440,
 io_form_history                     = 2
 io_form_restart                     = 2
 io_form_input                       = 2
 io_form_boundary                    = 2
 /

 &domains
 time_step                           = 60,
 time_step_fract_num                 = 0,
 time_step_fract_den                 = 1,
 max_dom                             = 3,
 i_parent_start    =   1,     21,    27,
 j_parent_start    =   1,     21,    26,
 e_we                     = 247,      574,    1471,
 e_sn                     = 158,      370,      889,
 e_vert                              = 50,    50,   50,
 p_top_requested                     = 5000,
 num_metgrid_levels                  = 38,
 num_metgrid_soil_levels             = 4,
 dx                                  =  36000,  12000,4000,
 dy                                  =  36000,  12000,4000,
 
 grid_id                             = 1,     2,     3,
 parent_id         =   1,      1,      2,
 parent_grid_ratio =   1,      3,      3,

 parent_time_step_ratio              = 1,     3,     3,
 feedback                            = 1,
 smooth_option                       = 0,
 /

 &physics
 physics_suite                       = 'CONUS'
 mp_physics                          = -1,    -1,    -1,
 cu_physics                          = -1,    -1,     0,
 ra_lw_physics                       = -1,    -1,    -1,
 ra_sw_physics                       = -1,    -1,    -1,
 bl_pbl_physics                      = -1,    -1,    -1,
 sf_sfclay_physics                   = -1,    -1,    -1,
 sf_surface_physics                  = -1,    -1,    -1,
 radt                                = 30,    30,    30,
 bldt                                = 0,     0,     0,
 cudt                                = 5,     5,     5,
 icloud                              = 1,
 num_land_cat                        = 21,
 sf_urban_physics                    = 0,     0,     0,
 /

 &fdda
 /

 &dynamics
 hybrid_opt                          = 2, 
 w_damping                           = 0,
 diff_opt                            = 1,      1,      1,
 km_opt                              = 4,      4,      4,
 diff_6th_opt                        = 0,      0,      0,
 diff_6th_factor                     = 0.12,   0.12,   0.12,
 base_temp                           = 290.
 damp_opt                            = 3,
 zdamp                               = 5000.,  5000.,  5000.,
 dampcoef                            = 0.2,    0.2,    0.2
 khdif                               = 0,      0,      0,
 kvdif                               = 0,      0,      0,
 non_hydrostatic                     = .true., .true., .true.,
 moist_adv_opt                       = 1,      1,      1,     
 scalar_adv_opt                      = 1,      1,      1,     
 gwd_opt                             = 1,
 /

 &bdy_control
 spec_bdy_width                      = 5,
 specified                           = .true.
 /

 &grib2
 /

 &namelist_quilt
 nio_tasks_per_group = 0,
 nio_groups = 1,
 /

之后正常运行./real.exe./wrf.exe即可、、、

				一个努力学习python的海洋人
	            水平有限,欢迎指正!!!
	            欢迎评论、收藏、点赞、转发、关注。
	            关注我不后悔,记录学习进步的过程~~
### 回答1: wrf-chem数据下载的相关网址链接: 1. NCEP/NCAR Reanalysis I: ftp://ftp.cdc.noaa.gov/Datasets/ncep.reanalysis.dailyavgs/surface/ 2. Chemical Transport Model (CTM) data from the GEOS-Chem group: https://acmg.seas.harvard.edu/geos/ 3. Emissions data from the Emissions Database for Global Atmospheric Research (EDGAR): https://edgar.jrc.ec.europa.eu/ 4. The Community Multi-scale Air Quality (CMAQ) modeling system data: https://www.epa.gov/air-research/community-multiscale-air-quality-cmaq-modeling-system 请注意,不同的数据来源可能需要不同的许可证才能访问,请确保您具有访问所需数据的合法资格。 ### 回答2: WRF-Chem是一种大气化学模型,它用于模拟大气中化学物种的输运和转化过程。在建立WRF-Chem模型之前,我们需要收集和处理一些数据,以确保模型的准确性和可靠性。这些数据包括地理信息、排放数据、气象数据和化学初始和边界条件等。 首先,地理信息数据是建立WRF-Chem模型的基础。这些数据包括经纬度、高程和土地覆盖类型等信息,可以用于生成地形和表面辐射强度图。我们可以在https://www.ngdc.noaa.gov/上下载世界各地的地理数据。 其次,排放数据是描述大气中污染物来源和排放速率的关键数据。这些数据包括人工排放和自然排放两种来源。人工排放包括工业、交通和农业等活动产生的污染物,自然排放包括植被的插值和火山喷发等自然事件。各个国家和地区的排放数据可在Emission Database for Global Atmospheric Research (EDGAR) (https://www.sciencedirect.com/science/article/pii/S1352231009003904 )上下载。 第三,气象数据WRF-Chem模型的必需数据。气象数据包括气温、风速、风向和湿度等逐小时或逐分钟的数据。我们可以在National Centers for Environmental Prediction (NCEP) (https://www.ncdc.noaa.gov/data-access/model-data/model-datasets)或European Center for Medium-Range Weather Forecasts (ECMWF) (https://www.ecmwf.int/en/forecasts/datasets)上下载气象数据。 最后,化学初始和边界条件数据是指大气中化学物种的浓度和化学反应速率等信息。这些数据通常由现观测或其他化学模型得出,可以在全球化学输送模型 (GEOS-Chem) (http://acmg.seas.harvard.edu/geos/)上获取。 总之,WRF-Chem模型的建立需要以上四个基本数据。这些数据可以在相关数据下载网址上获取。但是,这些数据的质量和格式都需要我们认真审查和处理,以确保WRF-Chem模型的准确性和可靠性。 ### 回答3: wrf-chem是一种用于模拟大气物质输运和化学反应的数值模型。在进行wrf-chem模拟时,需要使用许多与气体和颗粒物浓度、化学反应等相关的数据。这些数据可以通过官方网站和其他一些数据平台进行下载。 其中,官方网站是wrf-chem模型最全面的数据源,开发者提供了许多与模型运行相关的数据和工具。这些数据包括了不同时间尺度上的气象模型、气体和颗粒物浓度模型、化学反应模型、辐射强度模型等。此外,网站中还提供了许多工具,例如反求模块、统计模块等,可以用于模型调试和后处理下载方式为直接点击网站上的下载链接,选择相应的数据和工具即可。 另外,还有一些数据平台也可以提供相关数据下载,例如NCAR Data Portal、Earth System Grid、国家气象信息中心等。这些平台通常提供了一些免费的数据下载服务,但需要用户进行注册和认证。同时,有些数据需要进行特定的格式转换,才能够被wrf-chem模型所使用。 总体来说,wrf-chem模型所需的数据比较丰富,但是通过官方网站和其他数据平台的配合,用户可以方便地获取这些数据,并进行相应的分析和后处理
评论 25
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

简朴-ocean

继续进步

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值