python编程作业--盐度对流方程的差分格式设计与讨论

本文通过Python实现四种不同的差分格式——蛙跳格式、迎风格式、欧拉格式和Lax格式,探讨它们在模拟盐度对流中的稳定性、频散和耗散特性。当μ<1时,蛙跳和迎风格式稳定但有频散现象,欧拉格式始终不稳定,而Lax格式在μ<1时稳定。μ>1时,所有格式都表现出不稳定。分析表明,格式选择对模拟结果有显著影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

使用python对于盐度对流差分格式设计与讨论

题目要求如下:

在这里插入图片描述

差分格式设计如下:

方案1、蛙跳格式(时间和距离都用中央差)

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

python代码如下:
"""
Created on %(date)s

@author: %(jixianpu)s

Email : 211311040008@hhu.edu.cn

introduction : keep learning althongh walk slowly
"""

"""
分析说明:μ<1时,蛙跃格式是稳定的,但是会有频散现象发生,耗散比较小,盐度场峰值基本保持不变;μ>1时,明显看到格式不稳定。
"""


import numpy as np
import matplotlib.pyplot as plt
ss=np.zeros((2002,1002))   
dx=10
u=1
dt=5
#mu=u*dt/dx;
mu=1.1 #1.01,0.01,0.05
ss[0,300:401]=10
for n  in range(2001):
    for  j in range(1001):
        if (n==1)&(j==1):
            s1=ss[n,j]
            s2=ss[n,j]
            ss[n+1,j]=s1+mu*(-ss[n,j+1]+s2)
        elif n==1 & j!=1:
            s1=ss[n,j]
            ss[n+1,j]=s1+mu*(-ss[n,j+1]+ss[n,j-1])
        elif j==1 &n!=1:
            s2=ss[n,j]
            ss[n+1,j]=ss[n-1,j]+mu*(-ss[n,j+1]+s2)
        else :
            ss[n+1,j]=ss[n-1,j]+mu*(-ss[n,j+1]+ss[n,j-1])
           
plt.rcParams['axes.unicode_minus'] = False
fig=plt.figure(figsize=(15,15))   
ax=fig.add_subplot(1,1,1)
ax.plot(ss[1000])
# ax.set_xlim(0,1000)
# ax.set_ylim(-3,14)
ax.set_xlabel('area range',fontsize=30)
ax.set_ylabel('salinity',fontsize=30)
ax.tick_params(which='major',direction='out', pad=8,labelsize=25,length=10,\
                axis='both',bottom=True, left=True, right=False, top=False)
ax.set_title('t=1000s',fontsize=30)
图片如下:

在这里插入图片描述在这里插入图片描述
在这里插入图片描述

分析结论:

μ<1时,蛙跃格式是稳定的,但是会有频散现象发生,耗散比较小,盐度场峰值基本保持不变;μ>1时,明显看到格式不稳定。


方案2、迎风格式(时间用前差,距离用后差)

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

python 核心代码如下:
for n  in range(2001):
    for  j in range(1001):
        if (j==1):
            s1=ss[n,j]
            ss[n+1,j]=ss[n,j]-mu*(ss[n,j]-s1)
        else :
            ss[n+1,j]=ss[n,j]-mu*(ss[n,j]-ss[n,j-1])
图片如下:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

分析结论:

在μ<1时,迎风格式是稳定的,没有发生频散,但是发生耗散,盐柱的棱角变得圆滑。μ>1时,格式变得不稳定。。


方案3、欧拉格式(时间用前差,距离用中央差)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

python 核心代码:
for n  in range(2001):
    for  j in range(1001):
        if (j==1):
            s1=ss[n,j]
            ss[n+1,j]=ss[n,j]-0.5*mu*(ss[n,j+1]-s1)
        else :
            ss[n+1,j]=ss[n,j]-0.5*mu*(ss[n,j+1]-ss[n,j-1])
图片如下:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

分析结论:

欧拉法是一种绝对不稳定的格式,无论mu取多小,都是不稳定的


方案4、lax格式(在欧拉格式右边增加一个耗散项)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

python 核心代码:
mu=1.1
miu2=u*u*dt/(dx*dx)
for n  in range(2001):
    for  j in range(1001):
        if (j==1):
            s1=ss[n,j]
            ss[n+1,j]=ss[n,j]-0.5*mu*(ss[n,j+1])+0.5*mu*s1+miu2*ss[n,j+1]-2*miu2*ss[n,j]+miu2*s1
        else :
            ss[n+1,j]=ss[n,j]-0.5*mu*(ss[n,j+1])+0.5*mu*ss[n,j-1]+miu2*ss[n,j+1]-2*miu2*ss[n,j]+miu2*ss[n,j-1]
图片如下:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

分析结论:

在μ<1时,此格式是稳定的,有少许频散,耗散也比较少,盐度值是比较稳定的。
在μ>1时,格式不稳定。

ps:代码可能有点粗糙,只是简单记录一下,欢迎评论讨论。

			一个努力学习python的海洋人
            水平有限,欢迎指正!!!
            欢迎评论、收藏、点赞、转发、关注。
            关注我不后悔,记录学习进步的过程~~
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

简朴-ocean

继续进步

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值