python 对海洋、气象数据进行滤波--带通滤波处理

本文介绍了如何使用Python的scipy.signal.butter滤波器对海洋、气象数据进行带通滤波,重点解析了滤波器阶数N、频率Wn等参数,并提供了计算Wn的方法。通过实例解释了如何根据天气尺度计算截止频率,以获取特定时间尺度的信号。此外,还提及了低通和高通滤波的基本应用。
摘要由CSDN通过智能技术生成

如何使用python对其海洋、气象数据进行带通滤波处理,得到我们想要的信号呢?

这里以scipy.signal.butter滤波器为例,如何对于气象海洋数据做带通滤波处理进行简单讲解,库的官方说明文档链接如下:

butter滤波器

主要实现过程如下所示:

b,a=scipy.signal.butter(N, Wn, btype='band', analog=False, output='ba', fs=None)
filter_result=signal.filtfilt(b, a, data)

里面主要需要关注的为:

  • N:滤波器阶数
  • Wn:频率 (这里我理解的就是你要滤出的时间天数)
  • btype:滤波器类型,lowpass, highpass, bandpass, bandstop分别为高通,低通,带通、带阻,默认为低通

构造滤波器并传入相应参数后,一般会返回两个变量:a(分母系数)、b(分子系数),之后通过函数signal.filtfilt(),传入相应变量、数据,就可以得到滤波后的数据了。

对于阶数N来说,我的理解是一般不用设置太高,太高的话可能会滤掉过多的信号,我这里一般使用阶数:3、4

以上就是关于滤波的实现原理,下面主要讲解一下关于带通滤波的频率的理解,因为发现大部分的教程示例不适用于海洋、气象数据滤波的处理,没那么通俗易懂。

举个带通滤波的例子

假如想要通过滤波得到天气尺度3-10天的信号,这儿肯定需要做带通滤波了,那么如何计算Wn呢?

首先,先明白Wn的计算公式,通过官网说明可以得到:

Wn=2*截止频率/采样频率

频率是什么呢,其实很简单,频率=1/周期,可以理解为就是我们数据周期的倒数。

因为天气尺度的范围为3-10天,我们默认周期的单位为:1天,以下基于周期为1天的前提进行计算:


相对于周期为一天来说,

  • 假如你的数据是daily的,一天就一个,那么你的数据周期就是1,采样频率就等于1/1=1,还是1
  • 假如你的数据是一天四个时次的,那么一个数据的周期就是0.25,那么采样频率就是1/0.25=4

截止频率是什么呢?与上面采样频率道理类似,还是以相对于周期为一天来说:

3天的截止频率就是1/3,10天的截止频率就是1/10

所以对于3-10天的带通滤波,如果数据基于周期为一天的话,Wn=[2/10,2/3]

如果是30-60天的带通滤波,Wn=[2/60,2/30]

注意:对于数字滤波器,如果没有指定 fs,则将 Wn 单位标准化为0到1,所以检验我们算的Wn有没有错误,可以看他的范围是否符合要求。

这样下面的处理就比较简单了,传入需要滤波的数据即可了:

b, a = signal.butter(3, [2/10,2/3], 'bandpass',axis=time那一维)
filter_data = signal.filtfilt(b, a, origin_data)

低通和高通滤波比较简单这里就不再阐述了

以上是对于python对于海洋、气象数据进行带通滤波处理时的一些简单理解,水平有限,欢迎交流!

		    			一个努力学习python的海气人
	                    水平有限,欢迎指正!!!
                        欢迎评论、收藏、点赞、转发、关注。
                        关注我不后悔,记录学习进步的过程~~
评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

简朴-ocean

继续进步

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值