Camera常用算法介绍3
3 高级功能算法2
3.1 背景虚化
3.1.1 单摄虚化
3.1.1.1 算法介绍
单摄虚化是通过软件算法模拟光学景深效果的技术,核心目标是实现背景模糊、主体突出的视觉效果。与双摄依赖硬件获取深度信息不同,单摄方案主要基于图像分割和深度估计算法实现,代表性案例包括Google Pixel系列手机。
3.1.1.2 技术发展
-
早期阶段(2017年前)
依赖简单高斯模糊,无法精准分割主体与背景,边缘处理粗糙。 -
突破期(2017-2018)
Google Pixel 2首次实现单摄人像模式:- 引入**双像素相位对焦(PDAF)**技术,通过镜头左右视角差异计算视差
- 采用U-Net架构的卷积神经网络进行人像分割
-
优化期(2018-2020)
Pixel 3升级方案:- 多帧合成提升信噪比
- 改进神经网络训练数据采集(五机同步拍摄系统)
- 引入双向空间求解器优化深度图精度
-
AI增强期(2020至今)
- 实时语义分割(如头发丝级边缘处理)
- 光斑效果模拟(Bokeh)
- 多物体景深分层处理
3.1.1.3 基础原理
3.1.1.3.1 核心流程
mermaid
graph TD
A[图像采集] --> B[多帧HDR+合成]
B --> C[神经网络分割]
C --> D[深度图生成]
D --> E[虚化渲染]
E --> F[后处理优化]
3.1.1.3.2 关键技术组件
(1)图像分割
- 网络架构:采用改进型U-Net,结合低阶特征(颜色/边缘)与高阶特征(语义)
- 输入分辨率:256x256(平衡精度与算力)
- 输出:主体蒙版(Matte)与置信度图
(2)深度估计
- PDAF原理:
- 将单个像素分为左右两个子像素,形成1mm基线立体视觉:
d = f * B / z
(d:视差,f:焦距,B:基线距离,z:物距) - 深度校正:
- 多帧堆栈降噪
- 镜头像差补偿(场曲/暗角修正)
(3)虚化渲染
- 模糊算法:
- 高斯模糊(基础)
- 光斑模拟(圆形/多边形)
- 景深渐变控制:
// 伪代码示例
float blurStrength = k(z) * (d - dfocus);
blurStrength = clamp(blurStrength, 0, 30);
- 分层处理:
- 前景保护(alpha通道混合)
- 中景渐变模糊
- 背景强模糊
3.1.1.4 代码实现
1. Android基础框架
// Camera配置
Camera camera = Camera.open();
camera.setPreviewCallback(new PreviewCallback() {
@Override
public void onPreviewFrame(byte[] data, Camera camera) {
processFrame(data);
}
});
// 图像处理管线
private void processFrame(byte[] data) {
Bitmap src = BitmapFactory.decodeByteArray(data, 0, data.length);
Bitmap mask = NeuralNetwork.segment(src); // 神经网络分割
Bitmap depth = DepthEstimator.calculate(src); // 深度估计
Bitmap blurred = GaussianBlur.apply(src, depth); // 虚化渲染
Bitmap result = ImageBlender.blend(src, blurred, mask);
imageView.setImageBitmap(result