Camera常用算法介绍3

3 高级功能算法2

3.1 背景虚化

3.1.1 单摄虚化

3.1.1.1 算法介绍

单摄虚化是通过软件算法模拟光学景深效果的技术,核心目标是实现背景模糊、主体突出的视觉效果。与双摄依赖硬件获取深度信息不同,单摄方案主要基于图像分割深度估计算法实现,代表性案例包括Google Pixel系列手机。

3.1.1.2 技术发展
  1. 早期阶段(2017年前)
    依赖简单高斯模糊,无法精准分割主体与背景,边缘处理粗糙。

  2. 突破期(2017-2018)
    Google Pixel 2首次实现单摄人像模式:

    • 引入**双像素相位对焦(PDAF)**技术,通过镜头左右视角差异计算视差
    • 采用U-Net架构的卷积神经网络进行人像分割
  3. 优化期(2018-2020)
    Pixel 3升级方案:

    • 多帧合成提升信噪比
    • 改进神经网络训练数据采集(五机同步拍摄系统)
    • 引入双向空间求解器优化深度图精度
  4. AI增强期(2020至今)

    • 实时语义分割(如头发丝级边缘处理)
    • 光斑效果模拟(Bokeh)
    • 多物体景深分层处理
3.1.1.3 基础原理
3.1.1.3.1 核心流程
mermaid
graph TD
A[图像采集] --> B[多帧HDR+合成]
B --> C[神经网络分割]
C --> D[深度图生成]
D --> E[虚化渲染]
E --> F[后处理优化]
3.1.1.3.2 关键技术组件

(1)图像分割

  • 网络架构:采用改进型U-Net,结合低阶特征(颜色/边缘)与高阶特征(语义)
  • 输入分辨率:256x256(平衡精度与算力)
  • 输出:主体蒙版(Matte)与置信度图

(2)深度估计

  • PDAF原理:
  • 将单个像素分为左右两个子像素,形成1mm基线立体视觉:
    d = f * B / z
    (d:视差,f:焦距,B:基线距离,z:物距)
  • 深度校正:
    • 多帧堆栈降噪
    • 镜头像差补偿(场曲/暗角修正)

(3)虚化渲染

  • 模糊算法:
    • 高斯模糊(基础)
    • 光斑模拟(圆形/多边形)
    • 景深渐变控制:
// 伪代码示例
float blurStrength = k(z) * (d - dfocus);
blurStrength = clamp(blurStrength, 0, 30);
  • 分层处理:
    • 前景保护(alpha通道混合)
    • 中景渐变模糊
    • 背景强模糊
3.1.1.4 代码实现

1. Android基础框架

// Camera配置
Camera camera = Camera.open();
camera.setPreviewCallback(new PreviewCallback() {
   
    @Override
    public void onPreviewFrame(byte[] data, Camera camera) {
   
        processFrame(data);
    }
});

// 图像处理管线
private void processFrame(byte[] data) {
   
    Bitmap src = BitmapFactory.decodeByteArray(data, 0, data.length);
    Bitmap mask = NeuralNetwork.segment(src);  // 神经网络分割
    Bitmap depth = DepthEstimator.calculate(src); // 深度估计
    Bitmap blurred = GaussianBlur.apply(src, depth); // 虚化渲染
    Bitmap result = ImageBlender.blend(src, blurred, mask);
    imageView.setImageBitmap(result
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值