选择排序
N个元素排序,找到最小的元素(称为第0个)放在第0个位子上(和原来的第0个位子上的元素交换位置),然后从剩下的N-1个元素中找到最小的放在第1个位子上…直至所有元素都就位。
void SelectionSort(int a[],int size)
{
for(int i=0; i<size-1; ++i){
int tmpMin = i;
//用来记录第i个到第size-1个元素中,最小的那个元素的下标
for(int j=i+1; j<size; ++j){
if(a[j]<a[tmpMin])//**执行最多次:(s-1)+(s-2)+...+1,量级:s^2==该算法复杂度**
tmpMin=j;
}
//下面将第i小的元素放在第i个位子上,并将原来占着第i个位子的元素挪到后面
int tmp=a[i];
a[i]=a[tmpMin];
a[tmpMin]=tmp;
}
}
插入排序
- 将数组a分为:左 有序,右 无序。
- 开始时有序的部分仅 a[0] ,其余都为无序部分。
- 每次取出无序部分(右)的第0个元素,把它加入到有序部分(左)。假设插入到合适位置p,则原p位置及其后面的有序部分元素,都向右移动一个位子。有序的部分即增加了一个元素。
- 直到无序的部分没有元素。
void InsertionSort(int a[], int size)
{
for(int i=1; i<size; ++i){
//a[i]是最左的无序元素,每次循环将a[i]放到合适的位置
for(int j=0; j<i; ++j)
if(a[j]>a[i]){ //**操作1**
//要把a[i]放到位置j,原下标j到i-1的元素都往后移一个位子
int tmp=a[i];
for(int k=i; k>j; --k)
a[k] = a[k-1]; //**操作2**
a[j] = tmp;
break;
}
}
}
//一次i循环中,操作1执行(j+1)次,操作2执行(i-j)次,即共(i+1)次。i从1递增到(size-1),故量级:size^2
冒泡排序
- 将数组a分为: 左 无序,右 有序。
- 开始时,整个数组都是无序的。
- 每次要使得无序部分(左)最大的元素移动到有序部分(右)第0个元素的左边。移动方法:依次比较相邻的两个元素,如果前面的比后面的大,就交换他们的位置。这样,大的元素不断往上浮。移动结束有序部分增加了一个元素。
- 直到无序部分没有元素。
void BubbleSort(int a[], int size)
{
for(int i=size-1; i>0; --i){
//每次要将未排序部分的最大值移动到下标i的位置
for(int j=0; j<i; ++j) //依次比较相邻的两个元素
if(a[j]>a[j+1]){ //**执行次数最多,量级:size^2**
int tmp = a[j];
a[j] = a[j+1];
a[j+1] = tmp;
}
}
}
简单排序的效率
- 上面3种简单排序算法,都要做n²量级次数的比较(n为元素个数)
- 好的排序算法,如快速排序、归并排序等,只需做n*log n量级次数的比较