【python】python电影评论数据抓取分析可视化(源码+数据+课程论文)【独一无二】

请添加图片描述


👉博__主👈:米码收割机
👉技__能👈:C++/Python语言
👉公众号👈:测试开发自动化【获取源码+商业合作】
👉荣__誉👈:阿里云博客专家博主、51CTO技术博主
👉专__注👈:专注主流机器人、人工智能等相关领域的开发、测试技术。


【python】python电影评论数据抓取分析可视化(源码+数据+课程论文)【独一无二】


一、整体要求

数据抓取

  1. 抓取电影评论数据:通过发送HTTP请求,自动化地从网站的API接口获取指定电影的评论数据。提取每条评论中的评论者昵称、评论内容和评分等关键信息。

  2. 数据存储:将提取的评论数据存储到本地的CSV文件data.csv中,便于后续的分析和处理。

数据可视化

  1. 评分分布柱状图:绘制柱状图展示不同评分的频率分布,直观显示观众对电影评分的集中情况。
  2. 评论内容词云图: 生成词云图展示评论中的高频词汇,帮助识别观众评论的热点话题和情感倾向。
  3. 评分占比饼状图: 绘制饼状图展示不同评分所占的比例,直观显示各个评分的相对分布。
  4. 昵称与评分关系柱状图:绘制柱状图展示不同用户的平均评分,分析主要评论用户的评分情况。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “影评” 获取。👈👈👈

网站部分内容如下:

在这里插入图片描述


二、数据抓取及可视化

  1. 初始化和设置:导入必要的库(如requests、BeautifulSoup、csv、pandas、matplotlib、wordcloud)。
    设置URL和请求头信息。
  2. 数据爬取和保存: 发送HTTP GET请求获取评论数据。检查请求状态码,确保请求成功。解析JSON响应,提取用户昵称、评论内容和评分。调用write_csv函数,将数据保存到data.csv文件中。
# 略....
if res.status_code == 200:
    # 略....
    for msg in usr_msg:
        write_csv([msg["xxx"], msg["content"], msg["rating"]])

通过绘制评分分布的柱状图,我们可以直观地看到不同评分的频率分布情况。这张图展示了观众对该电影的评分集中在哪些分数段。柱状图中的每一个柱子代表一个评分,柱子的高度表示给出该评分的评论数量。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “影评” 获取。👈👈👈

在这里插入图片描述

plt.figure(figsize=(10, 6))
data['rating'].value_counts().sort_index().plot(kind='bar', color='skyblue')
plt.xlabel('Rating')
plt.ylabel('Frequency')
plt.title('Rating Distribution')
plt.show()

词云图展示了评论中出现频率较高的词汇,通过不同大小的字体来表示这些词汇的出现频率。词云图的主要作用是帮助我们快速识别评论中的高频关键词,了解观众在评论中讨论的热点话题。

在这里插入图片描述

wordcloud = WordCloud(font_path='SimHei.ttf', width=800, height=400, background_color='white').generate(text)

plt.figure(figsize=(10, 6))
plt.imshow(wordcloud, interpolation='bilinear')
plt.axis('off')
plt.title('Word Cloud of Comments')
plt.show()

评分占比的饼状图展示了不同评分所占的比例,通过各个扇区的面积表示每个评分的评论数量占总评论数量的比例。饼状图能够清晰地显示出各个评分的相对比例。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “影评” 获取。👈👈👈

在这里插入图片描述

rating_counts = data['rating'].value_counts()

plt.figure(figsize=(10, 6))
plt.pie(rating_counts, labels=rating_counts.index, autopct='%1.1f%%', startangle=140, colors=plt.cm.Paired(range(len(rating_counts))))
plt.title('Rating Percentage')
plt.axis('equal')
plt.show()

昵称和评分的关系柱状图展示了不同用户的平均评分情况,通过横向柱状图的形式表示。每个柱子代表一个用户,柱子的长度表示该用户的平均评分。

在这里插入图片描述

plt.figure(figsize=(12, 8))
data.groupby('nickname')['rating'].mean().sort_values().plot(kind='barh', color='lightgreen')
plt.xlabel('Average Rating')
plt.ylabel('Nickname')
plt.title('Average Rating by Nickname')
plt.show()

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “影评” 获取。👈👈👈

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

米码收割机

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值