【python】python股票量化交易策略分析可视化(源码+数据集+论文)【独一无二】

请添加图片描述


👉博__主👈:米码收割机
👉技__能👈:C++/Python语言
👉公众号👈:测试开发自动化【获取源码+商业合作】
👉荣__誉👈:阿里云博客专家博主、51CTO技术博主
👉专__注👈:专注主流机器人、人工智能等相关领域的开发、测试技术。


【python】python股票量化交易策略分析可视化(源码+数据集+论文)【独一无二】



一、设计要求

选三只股票2024年2月1日至2024年5月30日的数据进行如下分析:

1.分析三只股票的价格走势,并对未来价格走势进行预测。
(1)从公司、行业、宏观角度进行分析:
(2)从技术指标角度定性预测其走势并。

2.对所选数据,利用马科维茨资产组合理论求其最小方差前沿。
(1)对其收益率进行作图和相关系数分析;(5分)
(2)绘制最小方差前沿曲线;
(3)将数据分为测试集与训练集,用训练集的数据得到最优资产配比,利用测试集来验证最优资产配比是否有效并进行分析。

3.选取其中一只股票进行时间序列分析
(1)对股票数据进行分析,建立适合的模型
(2)对该股票未来一个月的价格进行预测

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 量化策略 ” 获取。👈👈👈

4.以上述股票进行配对交易
(1)设定形成期和交易期,在形成期对两只股票对数价格进行协整检验
(2)找出配对比例和配对价差,计算价差的平均值和标准差;
(3)设定阈值,构造开平仓区间;
(4)模拟交易并进行分析。

5.使用“聚宽”量化投资平台,回测三因子策略,并对回测结果进行分析。
(1)选取2024年2月1日至2024年5月30日为回测区间,展示三因子策略的回测收益图。
(2)分析三因子策略的回测收益,包含策略收益、策略阿尔法值、贝塔值、夏普比率、最大回撤等指标。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 量化策略 ” 获取。👈👈👈


二、设计思路

预测股票走势

数据预处理

转换交易日期为datetime格式

df1['trade_date'] = pd.to_datetime(df1['trade_date'], format='%Y%m%d')
df2['trade_date'] = pd.to_datetime(df2['trade_date'], format='%Y%m%d')
df3['trade_date'] = pd.to_datetime(df3['trade_date'], format='%Y%m%d')

这里的pd.to_datetime函数将三只股票的交易日期字段从字符串格式转换为datetime格式。这一步非常重要,因为它将日期字符串转换为pandas可以理解和操作的日期时间对象,这对后续的时间序列分析非常有用。

设置交易日期为索引

df1.set_index('trade_date', inplace=True)
df2.set_index('trade_date', inplace=True)
df3.set_index('trade_date', inplace=True)

接着将交易日期设置为数据框的索引。这一步的目的是为了方便后续的时间序列操作,比如绘图和时间序列分析。通过将日期设为索引,可以更容易地按照时间顺序来处理和展示数据。

绘制股票收盘价格走势

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 量化策略 ” 获取。👈👈👈

plt.figure(figsize=(14, 7))
plt.plot(df1['close'], label='平安银行')
plt.plot(df2['close'], label='国农科技')
plt.plot(df3['close'], label='世纪星源')
plt.title('股票收盘价格走势')
plt.xlabel('日期')
plt.ylabel('收盘价格')
plt.legend()
plt.show()

在这里插入图片描述

绘制了三只股票的收盘价格走势图:

1.创建绘图窗口

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 量化策略 ” 获取。👈👈👈

   plt.figure(figsize=(14, 7))
   plt.figure函数创建一个新的绘图窗口,并设置图形的大小为14x7英寸。

2.绘制每只股票的收盘价格

   plt.plot(df1['close'], label='平安银行')
   plt.plot(df2['close'], label='国农科技')
   plt.plot(df3['close'], label='世纪星源')

plt.plot函数绘制三只股票的收盘价格曲线,并使用label参数为每条曲线添加标签。

3.设置图形标题和轴标签

   plt.title('股票收盘价格走势')
   plt.xlabel('日期')
   plt.ylabel('收盘价格')
   plt.title函数设置图形的标题,plt.xlabel和plt.ylabel函数分别设置X轴和Y轴的标签。

4.添加图例

   plt.legend()
   plt.legend函数显示图例,以便区分不同股票的价格走势。

5.显示图形

   plt.show()
   plt.show函数显示图形。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 量化策略 ” 获取。👈👈👈

马科维茨资产组合理论

收益率作图和相关系数分析

plt.figure(figsize=(14, 7))
plt.plot(returns)
plt.title('股票每日收益率')
plt.xlabel('日期')
plt.ylabel('收益率')
plt.legend(returns.columns)
plt.show()

这部分代码绘制了三只股票的每日收益率图表,以直观地展示不同股票在各个时间点上的收益变化情况。
在这里插入图片描述

计算相关系数矩阵

corr_matrix = returns.corr()
print('相关系数矩阵:')

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 量化策略 ” 获取。👈👈👈

在这里插入图片描述

2.2.3 最小方差组合

mean_returns = returns.mean()
cov_matrix = returns.cov()
num_assets = len(returns.columns)
args = (mean_returns, cov_matrix)

def min_variance(weights):
    return portfolio_statistics(weights, mean_returns, cov_matrix)[1]

# 略....
# 略....# 略....
# 略....

opt_results = minimize(min_variance, init_weights, method='SLSQP', bounds=bounds, constraints=constraints)
min_var_weights = opt_results.x

min_var_return, min_var_volatility, _ = portfolio_statistics(min_var_weights, mean_returns, cov_matrix)

通过优化函数minimize求解最小方差组合的权重。设置约束条件保证权重和为1,设置权重边界在0到1之间。最终得到最小方差组合的权重、收益和波动率。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 量化策略 ” 获取。👈👈👈

2.2.4绘制最小方差前沿曲线

def efficient_frontier(mean_returns, cov_matrix, returns_range):
    efficient_results = []
    for ret in returns_range:
        constraints = (
            {'type': 'eq', 'fun': lambda x: portfolio_return(x, mean_returns) - ret},
            {'type': 'eq', 'fun': lambda x: np.sum(x) - 1}
        )
        result = minimize(lambda w: portfolio_volatility(w, cov_matrix), init_weights, method='SLSQP', bounds=bounds, constraints=constraints)
        efficient_results.append(result)
    return efficient_results

# 略....
# 略....

plt.figure(figsize=(14, 7))
plt.scatter(efficient_volatilities, returns_range, c='blue', marker='o')
plt.scatter(min_var_volatility, min_var_return, c='red', marker='*', s=100)
plt.title('最小方差前沿曲线')
plt.xlabel('波动率')
plt.ylabel('收益率')
plt.show()

在这里插入图片描述

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 量化策略 ” 获取。👈👈👈

print(f'训练集最优资产配比: {train_min_var_weights}')
print(f'测试集投资组合的预期收益率: {test_portfolio_return}')
print(f'测试集投资组合的预期波动率: {test_portfolio_volatility}')

时间序列分析

代码的目的是绘制平安银行的收盘价格时间序列图。通过将交易日期作为横坐标,收盘价格作为纵坐标,直观展示了股票价格随时间的变化情况。这一步有助于初步了解股票价格的趋势和波动情况。
在这里插入图片描述

建立ARIMA模型
使用ARIMA模型对平安银行的股票价格进行拟合。ARIMA(df1[‘close’], order=(5, 1, 0)):指定ARIMA模型的参数(p, d, q),其中p=5表示自回归部分的阶数,d=1表示差分次数,q=0表示移动平均部分的阶数。

使用ARIMA模型进行拟合
model = ARIMA(df1['close'], order=(5, 1, 0))
model_fit = model.fit()

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 量化策略 ” 获取。👈👈👈

在这里插入图片描述

plt.figure(figsize=(14, 7))
plt.plot(df1['close'], label='原始数据')
plt.plot(model_fit.fittedvalues, color='red', label='拟合值')
plt.title('平安银行收盘价格与 ARIMA 模型拟合结果')
plt.xlabel('日期')
plt.ylabel('收盘价格')
plt.legend()
plt.show()

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 量化策略 ” 获取。👈👈👈

绘制了原始数据和ARIMA模型拟合值的对比图。通过可视化展示模型的拟合效果,可以直观地看到模型是否能够较好地捕捉股票价格的变化趋势。
在这里插入图片描述

预测未来价格

预测未来一个月的价格

forecast_steps = 30
forecast = model_fit.forecast(steps=forecast_steps)

在这里,使用ARIMA模型预测未来30天(一个月)的股票价格。

model_fit.forecast(steps=forecast_steps):生成未来30天的价格预测值。

绘制预测结果

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 量化策略 ” 获取。👈👈👈

plt.figure(figsize=(14, 7))
plt.plot(df1['close'], label='原始数据')
plt.plot(pd.date_range(start=df1.index[-1], periods=forecast_steps, freq='D'), forecast, color='red', label='预测值')
plt.title('平安银行未来一个月的价格预测')
plt.xlabel('日期')
plt.ylabel('收盘价格')
plt.legend()
plt.show()

在这里插入图片描述

绘制了原始数据和预测值的对比图。通过这张图,可以直观地看到模型对未来一个月股票价格的预测情况。

1.绘制时间序列图:直观展示平安银行股票收盘价格的历史变化情况。
2.建立ARIMA模型:对股票数据进行拟合,并评估模型的拟合效果。
3.预测未来价格:使用ARIMA模型预测未来一个月的股票价格,并绘制预测结果图。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 量化策略 ” 获取。👈👈👈

设计逻辑清晰,步骤完整,通过对股票价格进行时间序列分析和预测,为进一步的投资决策提供了科学依据。

配对交易

log_price1 = np.log(df1_formation)
log_price2 = np.log(df2_formation)

这里使用自然对数转换股票的收盘价格,以便进行协整检验。对数转换有助于平滑时间序列数据,并使得结果更具稳定性。

协整检验

score, pvalue, _ = coint(log_price1, log_price2)
print(f'协整检验 p-value: {pvalue}')

在这里插入图片描述
计算价差的平均值和标准差

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 量化策略 ” 获取。👈👈👈

mean_spread = spread.mean()
std_spread = spread.std()
print(f'配对比例: {hedge_ratio}')
print(f'价差平均值: {mean_spread}')
print(f'价差标准差: {std_spread}')

在这里插入图片描述
通过计算价差的平均值和标准差,可以得到价差的统计特性。这些统计特性在后续的开平仓决策中非常重要。

1.设定形成期和交易期:划分时间段用于计算配对比例和价差的统计特性,以及进行实际交易。
2.计算对数价格并进行协整检验:确定两只股票是否存在长期均衡关系。
3.找出配对比例和价差,计算价差的统计特性:通过线性回归计算配对比例,并得到价差的平均值和标准差。

这些步骤为后续的配对交易策略提供了坚实的基础,特别是在确定开平仓区间和进行模拟交易时,这些统计特性将发挥关键作用。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 量化策略 ” 获取。👈👈👈

回测三因子策略

合并收益率数据

returns = pd.concat([df1['returns'], df2['returns'], df3['returns']], axis=1)
returns.columns = ['平安银行', '国农科技', '世纪星源']
returns = returns.dropna()

合并了三只股票的收益率数据,并去掉了缺失值。这样可以得到一个包含所有股票收益率的完整数据框,方便后续的计算和分析。
2. 三因子策略回测

平等分配权重

weights = np.array([1/3, 1/3, 1/3])
returns['组合收益'] = returns.dot(weights)

这里三只股票在组合中的权重相等,每只股票的权重为1/3,并计算组合的收益率。展示三因子策略的回测收益图

在这里插入图片描述

这里使用平安银行作为市场基准,通过线性回归计算组合收益与市场收益之间的关系,得到阿尔法值和贝塔值。

add_constant函数为回归模型添加常数项。
OLS函数进行线性回归分析,得到回归模型。
alpha表示策略的超额收益,beta表示策略的市场风险。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 量化策略 ” 获取。👈👈👈

计算夏普比率

sharpe_ratio = returns['组合收益'].mean() / returns['组合收益'].std() * np.sqrt(252)

夏普比率用于衡量单位风险所获得的超额回报。这里使用年化收益率和标准差来计算夏普比

print(f'策略收益: {cumulative_returns[-1]}')
print(f'阿尔法值: {alpha}')
print(f'贝塔值: {beta}')
print(f'夏普比率: {sharpe_ratio}')
print(f'最大回撤: {max_drawdown}')

在这里插入图片描述

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 量化策略 ” 获取。👈👈👈

## 讲师介绍: 近 5 年个人投资理财年化收益平均超 25%。如果你也想提升自己的睡后收入,轻松赚钱,那么这门课就是为你量身打造。课程基于一个完整真实的量化交易业务来讲授,并融入老师的理财经验以及使用编程技术辅助投资的技巧,让你面对各种复杂投资情况也能做到游刃有余。 ## 学习目标: 从不懂“理财”开始到实现自动交易,成为一个“技术流”理财高手 编程技术 + 核心量化策略 + 交易系统开发 + 讲师经验分享,学会用技术辅助理财 本课程从最基础的什么是量化开始讲起,即使对投资理财不了解同样可以学习,轻松入门无压力。 从如何获取数据开始,到实现实盘交易,课程对量化交易的每一步都进行细致讲解,为你铺开量化交易的每一个细节。 不仅仅只是教你学会使用某种工具,更会教给你量化交易的投资思想,让你面对各种情况都游刃有余。 ## 课程亮点: 设计适合自己并能适应市场的交易策略,才是量化交易的灵魂 课程亲手带你设计并实现两种交易策略,快速培养你的策略思维能力 1. 择时策略:通过这个策略学会如何利用均线,创建择时策略,优化股票买入卖出的时间点。2. 选股策略:掌握选股策略的核心逻辑,并基于收益率创建动量选股策略,并验证其有效性。 手把手带你打造一个易扩展、更安全、效率更高的量化交易系统 第三方平台大而全,不易扩展,效率还差,信息安全也是大问题,打造自己的交易平台才是更优解
Python游戏数据采集分析可视化系统是基于Django框架开发的,该系统旨在通过爬虫技术获取游戏数据,并通过数据分析可视化展示,帮助用户了解游戏情况和进行数据决策。 系统的主要功能包括如下几个模块: 1. 爬虫模块:通过编写爬虫代码,从游戏官方网站或其他相关站点获取游戏数据。爬虫可以实现自动化的数据采集,可以按照设定的规则定时抓取数据,确保数据的及时性和准确性。 2. 数据库模块:系统使用数据库来存储采集到的游戏数据,常用的数据库选择可以是MySQL、SQLite等。通过Django框架提供的ORM技术,可以方便地对数据库进行增、删、改、查的操作,以及对游戏数据进行管理。 3. 数据分析模块:通过数据分析技术,对采集到的游戏数据进行统计、分析、挖掘。可以使用Python的科学计算库如NumPy和Pandas进行数据处理,通过统计学、机器学习等方法,揭示游戏数据背后的规律和趋势。 4. 可视化模块:通过数据可视化技术,将游戏数据以图表、地图等形式直观展示,帮助用户更好地理解数据,并进行数据决策。可以使用Python可视化库如Matplotlib和Seaborn进行图表绘制,或者使用JavaScript的可视化库如D3.js实现更复杂的可视化效果。 5. 源码开放性:系统的源码可以根据用户需求进行自定义修改和扩展。Django框架具有良好的可拓展性,用户可以根据自己的需求添加新的功能、优化系统性能等。 总之,Python游戏数据采集分析可视化系统使用Django框架进行开发,通过爬虫实现数据采集,数据分析可视化模块对数据进行处理和展示。系统源码的开放性使得用户可以根据实际需求自定义修改和扩展功能。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

米码收割机

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值