import lightgbm as lgb
import os
# 打印LightGBM版本
print("LightGBM version:", lgb.__version__)
# 检查是否启用了GPU支持
config = lgb.config.get_config()
device = config.get("device", "cpu")
print("Is GPU enabled in config:", device == "gpu")
# 检查环境变量
lightgbm_device = os.getenv('LIGHTGBM_DEVICE', 'Not set')
print("LIGHTGBM_DEVICE environment variable:", lightgbm_device)
# 如果环境变量设置了GPU,确保它也被配置文件接受
if lightgbm_device.lower() == 'gpu':
print("Environment variable indicates GPU should be enabled.")
else:
print("Environment variable does not indicate GPU is enabled.")
# 尝试创建一个简单的模型以确认GPU支持(可选)
try:
# 创建一个简单的数据集
import numpy as np
from sklearn.datasets import make_regression
X, y = make_regression(n_samples=1000, n_features=20, noise=0.1)
# 定义LightGBM的数据集
lgb_train = lgb.Dataset(X, y)
# 设置参数以尝试使用GPU
params = {
'objective': 'regression',
'metric': 'rmse',
'device': 'gpu' # 明确指定使用GPU
}
# 训练模型
model = lgb.train(params, lgb_train, num_boost_round=10)
print("Successfully trained a model with GPU support.")
except Exception as e:
print("Failed to train a model with GPU support:", str(e))
查看安装的lightgbm是否是GPU版本
最新推荐文章于 2025-03-26 16:13:39 发布