LightGBM算法详解与PyTorch实现

LightGBM算法详解与PyTorch实现


1. LightGBM算法概述

LightGBM(Light Gradient Boosting Machine)是由微软开发的一种高效的梯度提升框架。它基于决策树算法,专为大规模数据和高效计算而设计。LightGBM在多个机器学习竞赛中表现出色,尤其是在处理高维数据和大规模数据集时,其速度和准确性远超其他梯度提升算法。

1.1 梯度提升树(GBDT)

梯度提升树(Gradient Boosting Decision Tree, GBDT)是一种集成学习算法,通过逐步构建多个决策树来提升模型性能。每一棵树都试图纠正前一棵树的错误,最终将所有树的结果进行加权求和,得到最终的预测结果。

1.2 LightGBM的优势

  • 高效性:LightGBM采用了基于直方图的决策树算法,大大减少了计算量。
  • 支持大规模数据:LightGBM支持分布式计算,能够处理大规模数据集。
  • 准确性高:通过引入Le
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

闲人编程

你的鼓励就是我最大的动力,谢谢

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值