文章目录
供需分析例题
假定一个市场由A、B、C三个消费者组成,他们的单个消费者需求曲线分别为:QA=70-2P;QB=200-4P;QC=20-0.5P。行业供给曲线为:QS=40+3.5P。
求:
(1)市场均衡价格和均衡产量。
(2)每人的购买量。
分析:
(1)求市场均衡应该先使需求和供给函数联立,两者相等进而求出变量P,然后将变量P带入某个需求函数,求出Q
注意此题中需要将市场上所有需求相加
(2)每人的购买量只需要将均衡价格带入需求函数求得Q
解:
(1)市场需求曲线为:Qd=QA+QB+QC=290-6.5P
根据Qd=Qs建立方程:
290 − 6.5 P = 40 + 3.5 P 290-6.5P=40+3.5P 290−6.5P=40+3.5P
解方程得均衡价格为P=25,将P值代入Qd或Qs中求得均衡产量为:
Q = 290 − 6.5 ∗ 25 = 127.5 Q=290-6.5*25=127.5 Q=290−6.5∗25=127.5
(2)A、B、C每人的购买量分别为+
Q A = 70 − 2 ∗ 25 = 20 Q_A=70-2*25=20 QA=70−2∗25=20
Q B = 200 − 4 ∗ 25 = 100 Q_B=200-4*25=100 QB=200−4∗25=100
Q C = 20 − 0.5 ∗ 25 = 7.5 Q_C=20-0.5*25=7.5 QC=20−0.5∗25=7.5
效用理论例题
已知某消费者每月用2400元购买X和Y商品,他的效用函数为U=XY,X商品的价格为20元,Y商品的价格为30元,为获得最大效用,该消费者应该购买X商品和Y商品各为多少?
分析:
要使效用最大化,应先让 M U X P X \frac{MU_X}{P_X} PXMUX= M U Y P Y \frac{MU_Y}{P_Y} PYMUY
根据 M U = d U d Q MU=\frac{dU}{dQ} MU=dQdU求出 M U X , MU_X, MUX, M U Y MU_Y MUY
题目中给了X的价格为20元,Y的价格30元。
然后将上述变量带入公式,再将X或Y带入限制条件:
(x的商品数量*x的价格)+(y商品的数量*y的价格)=消费者收入
。
即:
P x X P_xX PxX+ P y Y P_yY PyY= I I I,其中Px是x商品的价格,Py是y商品的价格,I是消费者收入
消费者收入题目中给出了,求出x或y的数量之后再将变量带入限制条件即可求出另一个变量的值,此时两个商品的数量就求出来了。
解:
M U X = d U d Y = Y MU_X=\frac{dU}{dY}=Y MUX=dYdU=Y M U Y = d U d Y = X MU_Y=\frac{dU}{dY}=X MUY=dYdU=X
将MUx和MUy以及商品价格带入均衡条件得:
Y 20 = X 30 \frac{Y}{20}=\frac{X}{30} 20Y=30X 即: Y = 2 3 X Y=\frac{2}{3}X Y=32X
又因为 20 x + 30 y = 2400 20x+30y=2400 20x+30y=2400 所以
20 X + 30 ∗ 2 3 X = 2400 20X+30*\frac{2}{3}X=2400 20X+30∗32X=2400
最后求得X=60,Y=40
消费者效用分析例题
小明现在预备用1000元来购买牛肉和大米,牛肉的价格为每斤20元,大米的价格为每斤5元。
(1)请写出小明购买牛肉和大米的预算线方程。
(2)如果以牛肉的购买量为纵轴,大米的购买量为横轴。预算线的斜率为多少?
(3)如果大米的价格降低到每斤四元,请写出新的预算线方程。
分析:
消费者预算线方程:
P x X P_xX PxX+ P y Y P_yY PyY= I I I直线方程形式:
Y = I P Y − P X P Y X Y=\frac{I}{P_Y}-\frac{P_X}{P_Y}X Y=PYI−PYPXX
其中直线程中,表示为直线方程的斜率。
第一题:将所有变量代入消费者预算线方程,直接用方程表示出来即可。
第二题:以牛肉的购买量为纵轴,也就是Y。大米的购买量为横轴。也就是X,可以用预算线方程表示之后,再将其转换为直线方程形式。其中, − P X P Y -\frac{P_X}{P_Y} −PYPX就是直线方程的斜率。
第三题:将大米的价格改为4。带入消费者预算线方程即可。
解:
(1)假设大米的购买量为x,牛肉的购买量为y,则预算线方程为 1000 = 5 x + 20 y 1000=5x+20y 1000=5x+20y。(2)如果以牛肉的购买量为纵轴大米的购买量为横轴。
以上预算线可以改写为 Y = 50 − 1 4 X Y=50-\frac{1}{4}X Y=50−41X
因此预算线的斜率为 − 1 4 -\frac{1}{4} −41
(3)如果大米的价格降低到每斤4元,新的预算线方程为 1000 − 4 X + 20 Y 1000-4X+20Y 1000−4X+20Y。
需求价格弹性例题
原始公式
某产品的需求价格弹性为2,如果明年该商品计划降价10%,那么该商品的销售量明年会增加多少?
分析:
根据需求价格弹性=需求量变动百分比/价格变动百分比,可以推导出:
需求量变动百分比=价格变动百分比*需求价格弹性,带入公式即可求出需求量变动百分比。
解:
根据需求价格弹性的公式, 得:
需求量变动百分比= 价格变动百分比* 需求价格弹性= 10%×2=20%
所以预期明年该商品的销售量会增加20%
弧弹性:
假定某企业在他的主要竞争对手降价之前,运动鞋的每月销量为10000双,售价为100元/双,在这个竞争对手降价之后,在这个竞争对手降价之后, 该公司的每月销量下降到8000双,依照过去的经验,该公司的运动鞋的需求价格弹性约为-2.0,如果该公司希望将销量恢复到每月10000双,那么应该降价到多少?
分析:首先题目中给的是两个点,所以要用到弧弹性,求两个点之间弧的弹性。
公式:
E d = Q 2 − Q 1 P 2 − P 1 ∗ P 1 + P 2 Q 1 + Q 2 E_d=\frac{Q_2-Q_1}{P_2-P1}*\frac{P_1+P_2}{Q_1+Q_2} Ed=P2−P1Q2−Q1∗Q1+Q2P1+P2
题目中给出了Q1,Q2,P1,只有P2未知数,带入求出P2即可
竞争对手降价前,销量为10000双时就是A点,此时该公司正处于价格P=100的时候;竞争对手降价后,此时该公司需求曲线因为其他(非价格)因素发生变化,需求曲线移动,因为是销量减少,向左移动。因为竞争对手降价后该公司没有降价,价格不变,销量减少至8000,即A’,此时要求新需求曲线上销量为10000所对应的价格P2,,根据公式代入即可
解:
令Q1=8000,Q2=10000,P1=100,Ed=-2.0,根据弧弹性的计算公式
E d = Q 2 − Q 1 P 2 − P 1 ∗ P 1 + P 2 Q 1 + Q 2 E_d=\frac{Q_2-Q_1}{P_2-P1}*\frac{P_1+P_2}{Q_1+Q_2} Ed=P2−P1Q2−Q1∗Q1+Q2P1+P2
即
− 2 = 10000 − 8000 P 2 − 100 ∗ 100 + P 2 8000 + 10000 -2=\frac{10000-8000}{P_2-100}*\frac{100+P_2}{8000+10000} −2=P2−10010000−8000∗8000+10000100+P2
计算得:
P2=89.5(元/双)
当价格降到89.5元/双时,才能使该公司运动鞋的销量恢复到10000双。
点弹性:
假定某企业需求曲线方程为: Q = 3000 − 200 P Q=3000-200P Q=3000−200P。求: P = 10 P=10 P=10时的需求价格点弹性。
分析:
此题明确给出求点弹性(给出函数式即为求点弹性),只需将所有变量带入点弹性公式即可,题目中给出价格P为10的时候,求需求价格点弹性,将价格带入Q的方程,即可求出Q,P和Q都有了直接带入即可。
解:
当P=10时,Q=3000-200*10=1000
E d = d Q d P ∗ P Q = − 200 ∗ 10 1000 = − 2 E_d=\frac{dQ}{dP}*\frac{P}{Q}=-200*\frac{10}{1000}=-2 Ed=dPdQ∗QP=−200∗100010=−2
即P=10时,该企业的需求价格点弹性为-2。
根据需求定理,需求价格弹性的计算结果是负值,一般取其绝对值。需求价格弹性系数越大,说明该商品的需求量对其价格变动的反应灵敏度越高。
交叉弹性
某空调企业的营销部经理正在制定2017年的销售策略,为此需要估计企业在华东地区的空调需求量,信息管理部根据企业经营数据,提供了企业在华东地区的空调需求回归方程:
Q X = 0.8 − 3.0 P X + 0.9 I + 2.0 P Y + 1.4 A Q_X=0.8-3.0P_X+0.9I+2.0P_Y+1.4A QX=0.8−3.0