文章目录
数学的基本知识
1.导数又名微商, 当函数y=f(x)的自变量x在X0上产生一个增量 Δ \Delta Δx时,函数输出值的增量 Δ \Delta Δy与自变量增量 Δ \Delta Δx的比值在 Δ \Delta Δx趋于零时的极限。
导数是函数的局部性质, 一个函数在某一点的导数描述了这个函数在这一点附近的变化率。 如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。
Xn的导数:先将系数乘以指数,然后再将指数降一次。
常数的导数是0。
2.斜率表示一条直线或曲线的切线关于横坐标轴倾斜程度的量,它通常用直线或曲线的切线与横坐标轴夹角的正切或两点的纵坐标之差与横坐标之差的比来表示。
斜率就是一条边与横坐标的夹角,夹角越大,斜率越大 。
斜率的计算方法 : 纵坐标与横坐标之间的差值,
3.求最大值或最小值
先求导,然后让导数等于0,得出可能极值点,然后通过判断导数的正负来判断单调性,最后再得出极值,然后再计算端点值,比较大小,最大就是最大值,最小就是最小值。
需求价格弹性
需 求 价 格 弹 性 系 数 ( E d ) = 需 求 量 变 动 的 百 分 比 价 格 变 动 的 百 分 比 需求价格弹性系数(Ed)=\frac{需求量变动的百分比}{价格变动的百分比} 需求价格弹性系数(Ed)=价格变动的百分比需求量变动的百分比
E d = Δ Q Q δ P P = Δ Q Δ P ∗ P Q E_d = \frac{\frac{\Delta Q}{Q}}{\frac{\delta P}{P}}=\frac{\Delta Q}{\Delta P}*\frac{P}{Q} Ed=PδPQΔQ=ΔPΔQ∗QP
弧弹性(题目中给了两个点,用弧弹性)
E d = Q 2 − Q 1 P 2 − P 1 ∗ P 1 + P 2 Q 1 + Q 2 E_d=\frac{Q_2-Q_1}{P_2-P1}*\frac{P_1+P_2}{Q_1+Q_2} Ed=P2−P1Q2−Q1∗Q1+Q2P1+P2
点弹性(题目中给了函数表达式,用点弹性)
E d = lim Δ P → 0 Δ Q Δ P ∗ P Q = d Q d P ∗ P Q E_d=\lim_{\Delta P \to 0}\frac{\Delta Q}{\Delta P}*\frac{P}{Q}=\frac{dQ}{dP}*\frac{P}{Q} Ed=ΔP→0limΔPΔQ∗QP=dPdQ∗QP
-
需求价格弹性的种类和图像
Ed=0,则称为该商品的需求对其价格变动完全无弹性;
Ed<1,则称该商品的需求对其价格变动缺乏弹性;
Ed=1,则称该商品的需求对其价格变动为单位弹性;
Ed>1,则称该商品的需求对其价格变动富有弹性;
Ed= ∞ \infty ∞,则称该商品的需求对其价格变动具有完全弹性,也称需求对其价格变动的具有无限弹性。
涨价 | 降价 | |
---|---|---|
弹性:$Ed>1 $ | 减少 | 增加 |
弹性: E d < 1 Ed<1 Ed<1 | 增加 | 减少 |
弹性: E d = 1 Ed=1 Ed=1 | 不变 | 不变 |
弹性:$Ed=$0 | ||
弹性: E d = ∞ Ed=\infty Ed=∞ |
需求收入弹性
需 求 收 入 弹 性 系 数 ( E d ) = 需 求 量 变 动 的 百 分 比 收 入 变 动 的 百 分 比 需求收入弹性系数(Ed)=\frac{需求量变动的百分比}{收入变动的百分比} 需求收入弹性系数(Ed)=收入变动的百分比需求量变动的百分比
E d = Δ Q Q δ M M = Δ Q Δ M ∗ M Q E_d = \frac{\frac{\Delta Q}{Q}}{\frac{\delta M}{M}}=\frac{\Delta Q}{\Delta M}*\frac{M}{Q} Ed=MδMQΔQ=ΔMΔQ∗QM
弧弹性(题目中给了两个点,用弧弹性)
E d = Q 2 − Q 1 M 2 − M 1 ∗ M 1 + M 2 Q 1 + Q 2 E_d=\frac{Q_2-Q_1}{M_2-M_1}*\frac{M_1+M_2}{Q_1+Q_2} Ed=M2−M1Q2−Q1∗Q1+Q2M1+M2