Twenty Lectures on Algorithmic Game Theory 算法博弈论二十讲 Lecture 2 Mechanism Design Basics
过去的 15 年里,计算机科学与经济学之间进行了活跃的互动,催生了算法博弈论这一新兴领域。许多现代计算机科学中的核心问题,从大规模网络中的资源分配到在线广告,都涉及多个自利方之间的相互作用。经济学和博弈论提供了许多有用的模型和定义来思考这些问题。而且,思想的交流也是双向的,计算机科学中的概念在经济学中的重要性也在不断增加。
本书源于作者在斯坦福大学开设的算法博弈论课程,旨在为学生和其他新入门者提供一个快速而易懂的介绍,涵盖了该领域中许多最重要的概念。书中还包括在线广告、无线频谱拍卖、肾脏交换和网络管理的案例研究。
蒂姆·拉夫加登(Tim Roughgarden)是斯坦福大学计算机科学的副教授。由于他在算法博弈论方面的研究,他获得了 ACM Grace Murray Hopper 奖、科学与工程师总统早期职业奖(PECASE)、卡莱奖(Kalai Prize)以及社会选择与福利奖、数学规划协会的塔克奖(Tucker Prize)和 EATCS-SIGACT 的哥德尔奖(Gödel Prize)。他撰写了《自私路由与无序代价》(2005)一书,并合编了《算法博弈论》(2007)一书。
Lecture 2 Mechanism Design Basics
从本讲开始,我们正式研究机制设计,即规则制定的科学。本讲介绍了一个重要且经典的机制设计问题——单物品拍卖的设计,并在这一相对简单的环境中开发了一些机制设计的基础知识。后续的讲座将把学到的知识扩展到更复杂的应用中。
第 2.1 节定义了单物品拍卖的模型,包括投标人的拟线性效用模型。第 2.2 节快速形式化了密封竞价拍卖,第 2.3 节提到了第一价格拍卖,而在第 2.4 节中,我们介绍了第二价格(也称为维克里)拍卖,并确立了它们的基本性质。第 2.5 节正式化了我们对拍卖的期望:强激励保证、强性能保证和计算效率。第 2.6 节介绍了一个关于赞助搜索拍卖的案例研究,这是一种用于在线广告销售的“杀手级应用”。
2.1 Single-Item Auctions
考虑一个卖家拥有一件物品,比如一部稍微过时的智能手机。这就是典型 eBay 拍卖的设置。在这种情况下,有一些潜在的投标人(策略性投标人)对购买这件物品感兴趣。
我们希望分析投标人在各种拍卖形式中的行为。为此,我们需要一个模型来描述投标人的需求。第一个关键假设是,每个投标人 i i i都有一个非负的估值 v i v_i vi,即他们对所售物品的最高支付意愿。因此,投标人 i i i希望以尽可能低的价格获得该物品,前提是售价不超过 v i v_i vi。另一个重要的假设是,这一估值是私有的,即卖家和其他投标人都不知道这个估值。
我们的投标人效用模型,称为拟线性效用模型,具体如下。如果投标人 i i i在拍卖中失败,她的效用为 0。如果投标人以价格 p p p获胜,她的效用为 v i − p v_i - p vi−p。这可以说是最简单且自然的效用模型,也是我们在这些讲座中关注的模型。
2.2 Sealed-Bid Auctions
大多数情况下,我们关注一个简单的拍卖形式类别:密封竞价拍卖。其过程如下:
- 每个投标人 i i i私下向卖家提交一个出价 b i b_i bi——你可以想象成在一个密封的信封中提交。
- 卖家决定谁获得物品(如果有人获得的话)。
- 卖家决定销售价格。
在第二步中,有一个显而易见的实现方式——将物品给出价最高的投标人。这是我们在本讲中考虑的唯一选择规则。
实现第三步的方法有多种合理选择,而这种选择会显著影响投标人的行为。例如,假设我们试图采取利他的做法,对获胜的投标人不收取任何费用。这种想法会严重适得其反,导致拍卖变成一个“谁能报出最高数字”的游戏。
2.3 First-Price Auctions
在第一价格拍卖中,获胜的投标人支付其出价。这类拍卖在实际中很常见。
第一价格拍卖很难进行推理。首先,作为参与者,难以确定如何出价。其次,作为卖家或拍卖设计者,也难以预测会发生什么。为了更好地说明这一点,想象一下你正在参与以下的第一价格拍卖。你对所售物品的估值(以美元计算)是你的出生月份加上你出生日期的数字。因此,你的估值介于 2(1 月 1 日)到 43(12 月 31 日)之间。假设有一个其他竞标者(从世界范围内随机选择),其估值方式与您相同。你会提交什么样的出价以最大化你的期望效用?知道对手的生日会有帮助吗?如果你知道拍卖中有两个其他投标人而不是一个,你的答案会改变吗?
2.4 Second-Price Auctions and Dominant Strategies
现在我们将重点放在另一种单物品拍卖形式上,这种拍卖在实际中也很常见,而且更容易推理。当你赢得 eBay 拍卖时会发生什么?如果你出价 100 美元并获胜,你真的会支付 100 美元吗?不一定:eBay 使用一种“代理出价”机制,它会在你的最大出价达到之前,或者在你成为最高出价者之前(以先到者为准),代表你逐步提高出价。例如,如果其他最高出价只有 90 美元,那么你只需支付 90 美元(加上一小部分增量),而不是你最大出价的 100 美元。当你赢得 eBay 拍卖时,成交价格本质上是其他出价中最高的那个——即第二高的整体出价。
第二价格拍卖或维克里拍卖是一种密封竞价拍卖,在这种拍卖中,最高出价者获胜,并支付等于第二高出价的价格。为了说明第二价格拍卖最重要的性质,我们定义了一个支配策略(dominant strategy),即一种保证最大化投标人效用的策略(即出价),无论其他投标人怎么做。
命题 2.1(第二价格拍卖中的激励):在第二价格拍卖中,每个投标人 i i i的支配策略是将其出价 b i b_i bi设置为其私人估值 v i v_i vi。
命题 2.1 表明,参与第二价格拍卖特别容易。在选择出价时,投标人不需要考虑其他投标人的任何情况——无论有多少人参与,他们的估值是多少,他们是否如实出价,等等。这与第一价格拍卖完全不同,在第一价格拍卖中,将出价设置为自身估值从来不是一个合理的策略——这会保证零效用,而最佳的低报出价依赖于其他投标人的出价。
命题 2.1 的证明:固定一个任意的投标人 i i i、估值 v i v_i v