表达式
D
n
p
=
∂
n
∂
ω
n
ϕ
(
ω
)
(
n
=
1
,
2
,
3
,
…
)
D_n^p=\frac{\partial^n}{\partial\omega^n}\phi(\omega)(n=1,2,3,\ldots)
Dnp=∂ωn∂nϕ(ω)(n=1,2,3,…)
群速度
D
1
p
D_1^p
D1p 表示群时间延迟,群的概念类似于波包、能量和粒子的概念,
D
1
p
=
∂
∂
ω
ϕ
(
ω
)
=
k
2
x
−
k
1
x
ω
2
−
ω
1
=
Δ
k
Δ
ω
x
=
x
c
=
t
D_1^p=\frac{\partial}{\partial\omega}\phi(\omega)=\frac{k_2x-k_1x}{\omega_2-\omega_1}=\frac{\Delta k}{\Delta \omega}x=\frac{x}{c} =t
D1p=∂ω∂ϕ(ω)=ω2−ω1k2x−k1x=ΔωΔkx=cx=t
群速度色散
D 2 p D_2^p D2p 表示群延迟色散,即不同粒子随着能量的变化时间延迟的变化,
K 56 K_{56} K56 的定义
K矩阵的第五行第六列
K
=
[
∂
x
c
u
t
∂
x
i
n
∂
x
o
u
t
∂
x
i
n
0
0
0
∂
x
o
u
t
∂
x
i
n
∂
θ
x
o
u
t
∂
x
i
n
∂
θ
x
o
u
t
∂
θ
x
i
n
0
0
0
∂
θ
s
o
u
t
∂
x
i
n
0
0
∂
y
o
u
t
∂
y
i
n
∂
y
o
u
t
∂
θ
y
i
n
0
∂
y
o
u
t
∂
x
i
n
0
0
∂
θ
y
o
u
t
∂
y
i
n
∂
θ
y
o
u
t
∂
θ
y
i
n
0
∂
θ
y
o
u
t
∂
x
i
n
∂
t
u
u
t
∂
x
i
n
∂
t
v
a
u
t
∂
θ
s
m
∂
t
v
a
u
t
∂
y
m
∂
t
v
a
u
t
∂
θ
y
m
1
∂
t
c
o
u
t
∂
v
i
n
0
0
0
0
0
1
]
\mathbf{K}=\left[\begin{array}{cccccccc}\frac{\partial x_{\mathrm{cut}}}{\partial x_{\mathrm{in}}}&\frac{\partial x_{\mathrm{out}}}{\partial x_{\mathrm{in}}}&0&0&0&\frac{\partial x_{\mathrm{out}}}{\partial x_{\mathrm{in}}}\\\frac{\partial\theta_{\mathrm{xout}}}{\partial x_{\mathrm{in}}}&\frac{\partial\theta_{\mathrm{xout}}}{\partial\theta_{\mathrm{xin}}}&0&0&0&\frac{\partial\theta_{\mathrm{sout}}}{\partial x_{\mathrm{in}}}\\0&0&\frac{\partial y_{\mathrm{out}}}{\partial y_{\mathrm{in}}}&\frac{\partial y_{\mathrm{out}}}{\partial\theta_{\mathrm{yin}}}&0&\frac{\partial y_{\mathrm{out}}}{\partial x_{\mathrm{in}}}\\0&0&\frac{\partial\theta_{\mathrm{yout}}}{\partial y_{\mathrm{in}}}&\frac{\partial\theta_{\mathrm{yout}}}{\partial\theta_{\mathrm{yin}}}&0&\frac{\partial\theta_{\mathrm{yout}}}{\partial x_{\mathrm{in}}}\\\\\frac{\partial t_{\mathrm{uut}}}{\partial x_{\mathrm{in}}}&\frac{\partial t_{\mathrm{vaut}}}{\partial\theta_{\mathrm{sm}}}&\frac{\partial t_{\mathrm{vaut}}}{\partial y_{m}}&\frac{\partial t_{\mathrm{vaut}}}{\partial\theta_{\mathrm{ym}}}&1&\frac{\partial t_{\mathrm{cout}}}{\partial v_{\mathrm{in}}}\\0&0&0&0&0&1\end{array}\right]
K=
∂xin∂xcut∂xin∂θxout00∂xin∂tuut0∂xin∂xout∂θxin∂θxout00∂θsm∂tvaut000∂yin∂yout∂yin∂θyout∂ym∂tvaut000∂θyin∂yout∂θyin∂θyout∂θym∂tvaut0000010∂xin∂xout∂xin∂θsout∂xin∂yout∂xin∂θyout∂vin∂tcout1
K 56 K_{56} K56 和 D 2 D_2 D2 之间的关系
K 56 = D 2 2 π K_{56} = \frac{D_2}{2\pi} K56=2πD2