群速度色散

表达式

D n p = ∂ n ∂ ω n ϕ ( ω ) ( n = 1 , 2 , 3 , … ) D_n^p=\frac{\partial^n}{\partial\omega^n}\phi(\omega)(n=1,2,3,\ldots) Dnp=ωnnϕ(ω)(n=1,2,3,)
在这里插入图片描述

群速度

D 1 p D_1^p D1p 表示群时间延迟,群的概念类似于波包、能量和粒子的概念,
D 1 p = ∂ ∂ ω ϕ ( ω ) = k 2 x − k 1 x ω 2 − ω 1 = Δ k Δ ω x = x c = t D_1^p=\frac{\partial}{\partial\omega}\phi(\omega)=\frac{k_2x-k_1x}{\omega_2-\omega_1}=\frac{\Delta k}{\Delta \omega}x=\frac{x}{c} =t D1p=ωϕ(ω)=ω2ω1k2xk1x=ΔωΔkx=cx=t

群速度色散

D 2 p D_2^p D2p 表示群延迟色散,即不同粒子随着能量的变化时间延迟的变化,

K 56 K_{56} K56 的定义

K矩阵的第五行第六列
K = [ ∂ x c u t ∂ x i n ∂ x o u t ∂ x i n 0 0 0 ∂ x o u t ∂ x i n ∂ θ x o u t ∂ x i n ∂ θ x o u t ∂ θ x i n 0 0 0 ∂ θ s o u t ∂ x i n 0 0 ∂ y o u t ∂ y i n ∂ y o u t ∂ θ y i n 0 ∂ y o u t ∂ x i n 0 0 ∂ θ y o u t ∂ y i n ∂ θ y o u t ∂ θ y i n 0 ∂ θ y o u t ∂ x i n ∂ t u u t ∂ x i n ∂ t v a u t ∂ θ s m ∂ t v a u t ∂ y m ∂ t v a u t ∂ θ y m 1 ∂ t c o u t ∂ v i n 0 0 0 0 0 1 ] \mathbf{K}=\left[\begin{array}{cccccccc}\frac{\partial x_{\mathrm{cut}}}{\partial x_{\mathrm{in}}}&\frac{\partial x_{\mathrm{out}}}{\partial x_{\mathrm{in}}}&0&0&0&\frac{\partial x_{\mathrm{out}}}{\partial x_{\mathrm{in}}}\\\frac{\partial\theta_{\mathrm{xout}}}{\partial x_{\mathrm{in}}}&\frac{\partial\theta_{\mathrm{xout}}}{\partial\theta_{\mathrm{xin}}}&0&0&0&\frac{\partial\theta_{\mathrm{sout}}}{\partial x_{\mathrm{in}}}\\0&0&\frac{\partial y_{\mathrm{out}}}{\partial y_{\mathrm{in}}}&\frac{\partial y_{\mathrm{out}}}{\partial\theta_{\mathrm{yin}}}&0&\frac{\partial y_{\mathrm{out}}}{\partial x_{\mathrm{in}}}\\0&0&\frac{\partial\theta_{\mathrm{yout}}}{\partial y_{\mathrm{in}}}&\frac{\partial\theta_{\mathrm{yout}}}{\partial\theta_{\mathrm{yin}}}&0&\frac{\partial\theta_{\mathrm{yout}}}{\partial x_{\mathrm{in}}}\\\\\frac{\partial t_{\mathrm{uut}}}{\partial x_{\mathrm{in}}}&\frac{\partial t_{\mathrm{vaut}}}{\partial\theta_{\mathrm{sm}}}&\frac{\partial t_{\mathrm{vaut}}}{\partial y_{m}}&\frac{\partial t_{\mathrm{vaut}}}{\partial\theta_{\mathrm{ym}}}&1&\frac{\partial t_{\mathrm{cout}}}{\partial v_{\mathrm{in}}}\\0&0&0&0&0&1\end{array}\right] K= xinxcutxinθxout00xintuut0xinxoutθxinθxout00θsmtvaut000yinyoutyinθyoutymtvaut000θyinyoutθyinθyoutθymtvaut0000010xinxoutxinθsoutxinyoutxinθyoutvintcout1

K 56 K_{56} K56 D 2 D_2 D2 之间的关系

K 56 = D 2 2 π K_{56} = \frac{D_2}{2\pi} K56=2πD2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值