1019 数字黑洞 (20分)

给定任一个各位数字不完全相同的 4 位正整数,如果我们先把 4 个数字按非递增排序,再按非递减排序,然后用第 1 个数字减第 2 个数字,将得到一个新的数字。一直重复这样做,我们很快会停在有“数字黑洞”之称的 6174,这个神奇的数字也叫 Kaprekar 常数。

例如,我们从6767开始,将得到

7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
7641 - 1467 = 6174
… …

现给定任意 4 位正整数,请编写程序演示到达黑洞的过程。

输入格式:
输入给出一个 (0,10
​4
​​ ) 区间内的正整数 N。

输出格式:
如果 N 的 4 位数字全相等,则在一行内输出 N - N = 0000;否则将计算的每一步在一行内输出,直到 6174 作为差出现,输出格式见样例。注意每个数字按 4 位数格式输出。

输入样例 1:
6767

输出样例 1:
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174

输入样例 2:
2222

输出样例 2:
2222 - 2222 = 0000

#include<iostream>
#include<cstdio>
using namespace std;
void swap(int *a){
	int k=0;
	for(int i=0;i<4;i++){
		for(int j=3;j>i;j--){
			if(a[j-1]<a[j]){
				k=a[j];
				a[j]=a[j-1];
				a[j-1]=k;
			}
		}
	}
}
int main(){
	int a[4],num,sum=0;
	scanf("%d",&num);
	for(int i=0;i<4;i++){
		a[i]=num%10;
		num=num/10;
	}
	swap(a);
	int m,n;
	while(sum!=6174){
		m=a[0]*1000+a[1]*100+a[2]*10+a[3];
		n=a[3]*1000+a[2]*100+a[1]*10+a[0];
		sum=m-n;
		if(sum==0){
				printf("%04d - %04d = %04d\n",m,n,sum);
			break;
		}
		
		printf("%04d - %04d = %04d\n",m,n,m-n);
		if(sum!=6174){
			for(int i=0;i<4;i++){
				a[i]=sum%10;
				sum=sum/10;
			}
			swap(a);
		}
		
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值