给定任一个各位数字不完全相同的 4 位正整数,如果我们先把 4 个数字按非递增排序,再按非递减排序,然后用第 1 个数字减第 2 个数字,将得到一个新的数字。一直重复这样做,我们很快会停在有“数字黑洞”之称的 6174,这个神奇的数字也叫 Kaprekar 常数。
例如,我们从6767开始,将得到
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
7641 - 1467 = 6174
… …
现给定任意 4 位正整数,请编写程序演示到达黑洞的过程。
输入格式:
输入给出一个 (0,10
4
) 区间内的正整数 N。
输出格式:
如果 N 的 4 位数字全相等,则在一行内输出 N - N = 0000;否则将计算的每一步在一行内输出,直到 6174 作为差出现,输出格式见样例。注意每个数字按 4 位数格式输出。
输入样例 1:
6767
输出样例 1:
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
输入样例 2:
2222
输出样例 2:
2222 - 2222 = 0000
#include<iostream>
#include<cstdio>
using namespace std;
void swap(int *a){
int k=0;
for(int i=0;i<4;i++){
for(int j=3;j>i;j--){
if(a[j-1]<a[j]){
k=a[j];
a[j]=a[j-1];
a[j-1]=k;
}
}
}
}
int main(){
int a[4],num,sum=0;
scanf("%d",&num);
for(int i=0;i<4;i++){
a[i]=num%10;
num=num/10;
}
swap(a);
int m,n;
while(sum!=6174){
m=a[0]*1000+a[1]*100+a[2]*10+a[3];
n=a[3]*1000+a[2]*100+a[1]*10+a[0];
sum=m-n;
if(sum==0){
printf("%04d - %04d = %04d\n",m,n,sum);
break;
}
printf("%04d - %04d = %04d\n",m,n,m-n);
if(sum!=6174){
for(int i=0;i<4;i++){
a[i]=sum%10;
sum=sum/10;
}
swap(a);
}
}
return 0;
}