- 博客(5)
- 收藏
- 关注
原创 论文学习 SCOPS: Self-Supervised Co-Part Segmentation
随着深度学习技术的快速发展,很多需要大量分析图像的领域都引入了相关算法,如医疗影像分类和分割,任务性能也得到了大幅度提升。然而在将深度学习网络应用到某个特殊领域时,常常面临着需要大量标注数据的窘境,这大大增加了研发的时间和经济成本。近期,自监督学习逐渐得到重视,这是一种监督式学习方法,但是训练目标不引入任何标注信息,通过设计精巧的损失函数,刻画目标任务,如图像分割,并融合相应约束条件,实现模型的自...
2019-12-21 17:11:06 2134
原创 论文学习 Feature Generating Networks for Zero-Shot Learning
最近火热的迁移学习领域实涵盖了很多方向,比如多任务学习、对抗生成网络、zero/one/few shot learning等。其中的关键问题应该从有限的标注数据中学习其真实分布,进而将训练好的模型通过微调迁移到其他任务,如果迁移的任务与与标注数据关联性较强,这种迁移会变得相对容易,也更容易获得成功。最近,学习了一篇来自马普所与阿姆大学共同发表的文章,...
2019-04-26 16:35:53 3381 3
原创 论文学习 Branched Multi-Task Networks: Deciding What Layers To Share
1. 多任务学习网络随着ICCV2017最佳论文授予kaiming大神的Mask-RCNN,多任务网络成为了新的研究热点。Mask-RCNN基于目标检测框架,在RoI pooling层后设计两个并行的子网络:一个分支是原始的目标检测分支,即判断物体类别和回归边框,另一个分支实现其他任务,如实例分割或人体关键点检测等,多任务同时学习提高了各自任务的性能(相比单独训练某个任务)。无独有偶,CVPR2...
2019-04-25 14:52:43 1086
原创 论文学习 FoveaBox: Beyond Anchor-based Object Detector
1. anchor box基础近期,基于anchor-free的目标检测方法重新引起众多研究人员的关注。之前几乎所有流行的通用的检测方法,如经典的两步方法Faster-RCNN,一步方法SSD,YOLO等,都需要根据经验设计不同特征尺度下的anchor box(有的方法中叫做default box)。实际上,anchor box是一系列经过设计的、尺寸不同的物体边框。一般情况下,如果我们需要在模...
2019-04-22 16:15:46 5655 4
原创 Centos升级gcc并安装python3
Centos升级gcc并安装python3安装gcc编译安装python3.6.5近期需要运行一个基于pytorch的目标检测的库https://github.com/princeton-vl/CornerNet,而这个库某些文件需要使用pytorch的C++接口编译。用系统默认的python和gcc,编译pytorch C++接口定义的层时,会报警告:Your compiler (c++) ...
2019-01-16 15:33:05 5272 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人