汉诺塔问题 —— 以三个盘为例

从小到大是称为1、2、3块。
将过程分为三个步骤:
- 将最上面两个为整体从X移动到Y
- 将第三个从X移动到Z
- 将前两个从Y移动到Z
第二步只移动一个圆盘但第一步和第三步移动的是整个部分,所以将1和3步再次分解如下:
第一步分解:将第一块从X移动到Z,再将第二块从X移动到Y,再将第一块从Z移动到Y,就实现了将前两块从X移动到Y。
第三部分解:将第一块从Y移动到X,再将第二块从Y移动到Z,再将第一块从X移动到Z,就实现了将前两块从Y移动到Z。
推导:假设有20层,则将上面19层当作整体移动,再移动第20层,再移动上十九层,而每次移动19层又将前18层移动,逐步推导至第一层。
#include<stdio.h>
#include<stdlib.h>
void move(int n, char x, char y, char z)
{
if (n == 1)
{
{printf("%c-->%c\n", x, z); }
}
else {
move(n - 1, x, z, y);
printf("%c-->%c\n", x, z);
move(n - 1, y, x, z);
}
}
int main()
{
int n;
printf("输入汉诺塔层数:");
scanf("%d", &n);
printf("步骤如下:\n");
move(n, 'x', 'y', 'z');
system("pause");
return 0;
}
本文详细解析了汉诺塔问题的解决思路,通过递归算法将复杂问题分解为更小的子问题,并提供了C语言实现的源代码。以三个盘为例,展示了如何将上层视为整体进行移动,最终实现所有盘从初始位置移动到目标位置。
2万+

被折叠的 条评论
为什么被折叠?



