给定一个 k+1 位的正整数 N,写成 a
k
⋯a
1
a
0
的形式,其中对所有 i 有 0≤a
i
<10 且 a
k
>0。N 被称为一个回文数,当且仅当对所有 i 有 a
i
=a
k−i
。零也被定义为一个回文数。
非回文数也可以通过一系列操作变出回文数。首先将该数字逆转,再将逆转数与该数相加,如果和还不是一个回文数,就重复这个逆转再相加的操作,直到一个回文数出现。如果一个非回文数可以变出回文数,就称这个数为延迟的回文数。(定义翻译自 https://en.wikipedia.org/wiki/Palindromic_number )
给定任意一个正整数,本题要求你找到其变出的那个回文数。
输入格式:
输入在一行中给出一个不超过1000位的正整数。
输出格式:
对给定的整数,一行一行输出其变出回文数的过程。每行格式如下
A + B = C
其中 A 是原始的数字,B 是 A 的逆转数,C 是它们的和。A 从输入的整数开始。重复操作直到 C 在 10 步以内变成回文数,这时在一行中输出 C is a palindromic number.;或者如果 10 步都没能得到回文数,最后就在一行中输出 Not found in 10 iterations.。
输入样例 1:
97152
输出样例 1:
97152 + 25179 = 122331
122331 + 133221 = 255552
255552 is a palindromic number.
输入样例 2:
196
输出样例 2:
196 + 691 = 887
887 + 788 = 1675
1675 + 5761 = 7436
7436 + 6347 = 13783
13783 + 38731 = 52514
52514 + 41525 = 94039
94039 + 93049 = 187088
187088 + 880781 = 1067869
1067869 + 9687601 = 10755470
10755470 + 07455701 = 18211171
Not found in 10 iterations.
我觉的很经典这道题,这道题是我唯一一道在1076-1080没有办法的题目,说他难把不算是很难,说他简单吧对于我来说也不简单。这道题对于我来说还是判断的和循环的问题,题目说ak不能为0,我还一直想怎么判断0的事情,后来参考别人后我觉得这是废话,因为相加后的数不可能最高为=0
1.我学会了字符出串的直接相加,与以往我会的大整数相加相比,(我先把字符串转化成整数数组,在一个个相加),直接相加很方便,进位的判断方法也改变了一点,总之不难而且很方便,有空我试试别的相似的题。
#include <iostream>
#include <algorithm>
#include<cstdio>
using namespace std;
bool pan(string s){
for(int i=0;i<s.length()/2;i++){
if(s[i]!=s[s.length()-1-i])
return false;
}
return true;
}
int main(){
string s1,s2;
int ans=0,jin=0;
cin>>s1;
while(ans<10){
if(pan(s1)){
printf("%s is a palindromic number.",s1.c_str());
break;
}
else{
string s3;
s2=s1;
reverse(s1.begin(),s1.end());
for(int i=0;i<s1.length();i++){
s3+=(s1[i]-'0'+s2[i]-'0'+jin)%10+'0';
jin=(s1[i]-'0'+s2[i]-'0'+jin)/10;
}
if(jin>0)
s3=s3+'1';
reverse(s3.begin(),s3.end());
printf("%s + %s = %s\n",s2.c_str(),s1.c_str(),s3.c_str());
ans++;
jin=0;
s1=s3;
}
}
if(ans>=10)
cout<<"Not found in 10 iterations.";
return 0;
}