1079 延迟的回文数

给定一个 k+1 位的正整数 N,写成 a
​k
​​ ⋯a
​1
​​ a
​0
​​ 的形式,其中对所有 i 有 0≤a
​i
​​ <10 且 a
​k
​​ >0。N 被称为一个回文数,当且仅当对所有 i 有 a
​i
​​ =a
​k−i
​​ 。零也被定义为一个回文数。

非回文数也可以通过一系列操作变出回文数。首先将该数字逆转,再将逆转数与该数相加,如果和还不是一个回文数,就重复这个逆转再相加的操作,直到一个回文数出现。如果一个非回文数可以变出回文数,就称这个数为延迟的回文数。(定义翻译自 https://en.wikipedia.org/wiki/Palindromic_number

给定任意一个正整数,本题要求你找到其变出的那个回文数。

输入格式:
输入在一行中给出一个不超过1000位的正整数。

输出格式:
对给定的整数,一行一行输出其变出回文数的过程。每行格式如下

A + B = C
其中 A 是原始的数字,B 是 A 的逆转数,C 是它们的和。A 从输入的整数开始。重复操作直到 C 在 10 步以内变成回文数,这时在一行中输出 C is a palindromic number.;或者如果 10 步都没能得到回文数,最后就在一行中输出 Not found in 10 iterations.。

输入样例 1:
97152
输出样例 1:
97152 + 25179 = 122331
122331 + 133221 = 255552
255552 is a palindromic number.
输入样例 2:
196
输出样例 2:
196 + 691 = 887
887 + 788 = 1675
1675 + 5761 = 7436
7436 + 6347 = 13783
13783 + 38731 = 52514
52514 + 41525 = 94039
94039 + 93049 = 187088
187088 + 880781 = 1067869
1067869 + 9687601 = 10755470
10755470 + 07455701 = 18211171
Not found in 10 iterations.
我觉的很经典这道题,这道题是我唯一一道在1076-1080没有办法的题目,说他难把不算是很难,说他简单吧对于我来说也不简单。这道题对于我来说还是判断的和循环的问题,题目说ak不能为0,我还一直想怎么判断0的事情,后来参考别人后我觉得这是废话,因为相加后的数不可能最高为=0
1.我学会了字符出串的直接相加,与以往我会的大整数相加相比,(我先把字符串转化成整数数组,在一个个相加),直接相加很方便,进位的判断方法也改变了一点,总之不难而且很方便,有空我试试别的相似的题。

#include <iostream>
#include <algorithm>
#include<cstdio>
using namespace std;
bool pan(string s){
    for(int i=0;i<s.length()/2;i++){
        if(s[i]!=s[s.length()-1-i])
            return false;
    }
    return true;
}
int main(){
    string s1,s2;
    int ans=0,jin=0;
    cin>>s1;
    while(ans<10){
        if(pan(s1)){
            printf("%s is a palindromic number.",s1.c_str());

            break;
        }
        else{
            string s3;
            s2=s1;
            reverse(s1.begin(),s1.end());
            for(int i=0;i<s1.length();i++){
                s3+=(s1[i]-'0'+s2[i]-'0'+jin)%10+'0';
                jin=(s1[i]-'0'+s2[i]-'0'+jin)/10;
            }
            if(jin>0)
                s3=s3+'1';
                reverse(s3.begin(),s3.end());

            printf("%s + %s = %s\n",s2.c_str(),s1.c_str(),s3.c_str());
            ans++;
            jin=0;
            s1=s3;
        }
    }
    if(ans>=10)
        cout<<"Not found in 10 iterations.";
        return 0;
}

参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值