动态规划:最大连续子序列和

给定一个数字序列,A1,A2,…AN,求i,j(1<=i<=j<=n),使得Ai+…Aj最大,输出这个最大和。
样例
输入
-2 11 -4 13 -5 -2
输出 20
即11 -4 +13 =20 最大
分析:如果暴力做的话,一个枚举,需要O(N ^2) ,在计算需要O(n),一共需要O(N ^ 3),因为重复计算的太多了,还是设置一个dp数组,用来保存当前的状态,最后只要求dp中最大的值就行了,状态转移方程是 dp[i] = max(dp[i-1] + A[i], A[i])

#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
const int maxn =1000+5;
int a[maxn],dp[maxn];
int main(){
	int n,bk=0;
	cin>>n;
	for(int i=0;i<n;i++){
		cin>>a[i];
	}
	dp[0]=a[0];
	for(int i=1;i<n;i++){
		dp[i]=max(a[i],dp[i-1] + a[i]);
	}
	for(int i=1;i<n;i++){
		if(dp[i]>dp[i-1]) bk=i;
	}
	cout<<dp[bk];
	
	return 0;
} 

关键是找到状态转移方程,这是重点也是思考的方向

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值