给定一个数字序列,A1,A2,…AN,求i,j(1<=i<=j<=n),使得Ai+…Aj最大,输出这个最大和。
样例
输入
-2 11 -4 13 -5 -2
输出 20
即11 -4 +13 =20 最大
分析:如果暴力做的话,一个枚举,需要O(N ^2) ,在计算需要O(n),一共需要O(N ^ 3),因为重复计算的太多了,还是设置一个dp数组,用来保存当前的状态,最后只要求dp中最大的值就行了,状态转移方程是 dp[i] = max(dp[i-1] + A[i], A[i])
#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
const int maxn =1000+5;
int a[maxn],dp[maxn];
int main(){
int n,bk=0;
cin>>n;
for(int i=0;i<n;i++){
cin>>a[i];
}
dp[0]=a[0];
for(int i=1;i<n;i++){
dp[i]=max(a[i],dp[i-1] + a[i]);
}
for(int i=1;i<n;i++){
if(dp[i]>dp[i-1]) bk=i;
}
cout<<dp[bk];
return 0;
}
关键是找到状态转移方程,这是重点也是思考的方向