3-整合·

数据量太大,换成 kddcup.data_10_percent( 为抽样去重后10%的实验数据)
在这里插入图片描述在这里插入图片描述

package NetWork

import org.apache.spark.mllib.clustering.{KMeansModel, KMeans}
import org.apache.spark.mllib.linalg.{Vectors,Vector}
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkContext, SparkConf}


object CheckAll {

  def main(args: Array[String]) {
    //创建入口对象
    val conf = new SparkConf().setAppName("CheckAll").setMaster("local")
    val sc= new SparkContext(conf)
    val HDFS_DATA_PATH = "hdfs://hadoop102:9000/Spark_Network_Abnormality/kddcup.data_10_percent"
    val rawData = sc.textFile(HDFS_DATA_PATH)

    /** 分类统计样本,降序排序 **/
        clusteringTake1(rawData)
    /** 评价k值 **/
        clusteringTake2(rawData)
        clusteringTake3(rawData)
        clusteringTake4(rawData)
        clusteringTake5(rawData)
    /**异常检测 **/
    anomalies(rawData)
  }



  //Clustering,Task1
  def clusteringTake1(rawData: RDD[String]) = {
    //分类统计样本个数,降序排序
    rawData.map(_.split(",").last).countByValue().toSeq.sortBy(_._2).reverse.foreach(println)


    val labelsAndData = rawData.map {
      line =>
        //将csv格式的行拆分成列,创建一个buffer,是一个可变列表
        val buffer = line.split(",").toBuffer
        //删除下标从1开始的三个类别型列
        buffer.remove(1, 3)
        //删除下标最后的标号列
        val label = buffer.remove(buffer.length - 1)
        //保留其他值并将其转换成一个数值型(Double型对象)数组
        val vector = Vectors.dense(buffer.map(_.toDouble).toArray)
        //将数组和标号组成一个元祖
        (label, vector)
    }

    /**
     * 为啥要进行labelsAndData => data转化?
     * 1、k均值在运行过程中只用到特征向量(即没有用到数据集的目标标号列)
     * 2、使data这个RDD只包含元祖的只包含元组的第二个元素
     * 3、实现2可以通过元组类型RDD的values属性得到,在放入缓存中,减少落地
     */
    //提取出元组的特征向量
    val data = labelsAndData.values.cache()

    //实例化Kmeans类对象
    val kmeans = new KMeans()
    //建立KMeansModel
    val model = kmeans.run(data)
    //输出每个簇的质心
    model.clusterCenters.foreach(println)

    val clusterLabelCount = labelsAndData.map {
      case (label, datum) =>
        //预测样本datum的分类cluster
        val cluster = model.predict(datum)
        //返回类别-簇的元组
        (cluster, label)
    }.countByValue()

    //对簇-类别对分别进行计数,并以可读方式输出
    clusterLabelCount.toSeq.sorted.foreach {
      case ((cluster, label), count) =>
        println(f"$cluster%1s$label%18s$count%8s")
    }
    data.unpersist()
  }

  /**
   * 欧氏距离公式
   * a.toArray.zip(b.toArray)对应 "两个向量相应元素"
   * map(p => p._1 - p._2)对应 "差"
   * map(d => d*d).sum对应 "平方和"
   * math.sqrt()对应 "平方根"
   * @param a
   * @param b
   * @return
   */
  def distance(a: Vector, b: Vector) =
    math.sqrt(a.toArray.zip(b.toArray).map(p => p._1 - p._2).map(d => d * d).sum)

  /**
   * 欧氏距离公式应用到model中
   * KMeansModel.predict方法中调用了KMeans对象的findCloest方法
   * @param datum
   * @param model
   * @return
   */
  def distToCenter(datum: Vector, model: KMeansModel) = {
    //预测样本datum的分类cluster
    val cluster = model.predict(datum)
    //计算质心
    val center = model.clusterCenters(cluster)
    //应用距离公式
    distance(center, datum)
  }

  /**
   * 平均质心距离
   * @param data
   * @param k
   * @return
   */
  def clusteringScore(data: RDD[Vector], k: Int): Double = {
    val kmeans = new KMeans()
    //设置k值
    kmeans.setK(k)
    //建立KMeansModel
    val model = kmeans.run(data)
    //计算k值model平均质心距离,mean()是平均函数
    data.map(datum => distToCenter(datum, model)).mean()
  }

  /**
   * 平均质心距离优化
   * @param data
   * @param k
   * @param run   运行次数
   * @param epsilon  阈值
   * @return
   */
  def clusteringScore2(data: RDD[Vector], k: Int, run: Int, epsilon: Double): Double = {
    val kmeans = new KMeans()
    kmeans.setK(k)
    //设置k的运行次数
    kmeans.setRuns(run)
    //设置阈值
    kmeans.setEpsilon(epsilon)
    val model = kmeans.run(data)
    data.map(datum => distToCenter(datum, model)).mean()
  }

  //Clustering,Take2
  def clusteringTake2(rawData: RDD[String]): Unit ={
    val data = rawData.map {
      line =>
        val buffer = line.split(",").toBuffer
        buffer.remove(1, 3)
        buffer.remove(buffer.length - 1)
        Vectors.dense(buffer.map(_.toDouble).toArray)
    }.cache()

    val run = 10
    val epsilon = 1.0e-4
    //在(5,30)区间内以5为等差数列数值不同k值对其评分
    (5 to 30 by 5).map(k => (k, clusteringScore(data, k))).foreach(println)

    //在(20,120)区间内以10为等差数列数值不同k值对其评分
    (30 to 100 by 10).par.map(k => (k, clusteringScore2(data, k, run, epsilon))).foreach(println)

    data.unpersist()
  }


  /**
   * 加工出R可视化数据存入HDFS中
   * @param rawData
   * @param k
   * @param run
   * @param epsilon
   */
  def visualizationInR(rawData: RDD[String], k: Int, run: Int, epsilon: Double): Unit ={
    val data = rawData.map {
      line =>
        val buffer = line.split(",").toBuffer
        buffer.remove(1, 3)
        buffer.remove(buffer.length - 1)
        Vectors.dense(buffer.map(_.toDouble).toArray)
    }.cache()

    val kmeans = new KMeans()
    kmeans.setK(k)
    kmeans.setRuns(run)
    kmeans.setEpsilon(epsilon)
    val model = kmeans.run(data)

    val sample = data.map(
      datum =>
        model.predict(datum) + "," + datum.toArray.mkString(",")
    ).sample(false, 0.05)   //选择了5%行

    sample.saveAsTextFile("hdfs://hadoop102:9000/Spark_Network_Abnormality/R/sample")
    data.unpersist()
  }

  /**
   *
   * @param data
   * @return
   */
  def buildNormalizationFunction(data: RDD[Vector]): (Vector => Vector) = {
    //将数组缓冲为Array
    val dataAsArray = data.map(_.toArray)
    //数据集第一个元素的长度
    val numCols = dataAsArray.first().length
    //返回数据集的元素个数
    val n = dataAsArray.count()
    //两个数组对应元素相加求和
    val sums = dataAsArray.reduce((a, b) => a.zip(b).map(t => t._1 + t._2))
    //将RDD聚合后进行求平方和操作
    val sumSquares = dataAsArray.aggregate(new Array[Double](numCols))(
      (a, b) => a.zip(b).map(t => t._1 + t._2 * t._2),
      (a, b) => a.zip(b).map(t => t._1 + t._2)
    )

    /** zip函数将传进来的两个参数中相应位置上的元素组成一个pair数组。
     * 如果其中一个参数元素比较长,那么多余的参数会被删掉。
     * 个人理解就是让两个数组里面的元素一一对应进行某些操作
     */
    val stdevs = sumSquares.zip(sums).map {
      case (sumSq, sum) => math.sqrt(n * sumSq - sum * sum) / n
    }
    val means = sums.map(_ / n)

    (datum : Vector) => {
      val normalizedArray = (datum.toArray, means, stdevs).zipped.map(
        (value, mean, stdev) =>
          if(stdev <= 0) (value- mean) else (value - mean) /stdev
      )
      Vectors.dense(normalizedArray)
    }
  }


  //clustering,Task3
  def clusteringTake3(rawData: RDD[String]): Unit ={
    val data = rawData.map { line =>
      val buffer = line.split(',').toBuffer
      buffer.remove(1, 3)
      buffer.remove(buffer.length - 1)
      Vectors.dense(buffer.map(_.toDouble).toArray)
    }

    val run = 10
    val epsilon = 1.0e-4

    val normalizedData = data.map(buildNormalizationFunction(data)).cache()

    (60 to 120 by 10).par.map(
      k => (k, clusteringScore2(normalizedData, k, run, epsilon))
    ).toList.foreach(println)

    normalizedData.unpersist()
  }

  /**
   * 基于one-hot编码实现类别型变量替换逻辑
   * @param rawData
   * @return
   */
  def buildCategoricalAndLabelFunction(rawData: RDD[String]): (String => (String, Vector))  = {
    val splitData = rawData.map(_.split(","))
    //建立三个特征
    val protocols = splitData.map(_(1)).distinct().collect().zipWithIndex.toMap   //特征值是1,0,0
    val services = splitData.map(_(2)).distinct().collect().zipWithIndex.toMap    //特征值是0,1,0
    val tcpStates = splitData.map(_(3)).distinct().collect().zipWithIndex.toMap   //特征值是0,0,1
    //
    (line: String) => {
      val buffer = line.split(",").toBuffer
      val protocol = buffer.remove(1)
      val service = buffer.remove(1)
      val tcpState = buffer.remove(1)
      val label = buffer.remove(buffer.length - 1)
      val vector = buffer.map(_.toDouble)

      val newProtocolFeatures = new Array[Double](protocols.size)
      newProtocolFeatures(protocols(protocol)) = 1.0
      val newServiceFeatures = new Array[Double](services.size)
      newServiceFeatures(services(service)) = 1.0
      val newTcpStateFeatures = new Array[Double](tcpStates.size)
      newTcpStateFeatures(tcpStates(tcpState)) = 1.0

      vector.insertAll(1, newTcpStateFeatures)
      vector.insertAll(1, newServiceFeatures)
      vector.insertAll(1, newProtocolFeatures)

      (label, Vectors.dense(vector.toArray))
    }
  }


  //Clustering,Task4
  def clusteringTake4(rawData: RDD[String]): Unit ={
    val paraseFunction = buildCategoricalAndLabelFunction(rawData)
    val data = rawData.map(paraseFunction).values
    val normalizedData = data.map(buildNormalizationFunction(data)).cache()

    val run = 10
    val epsilon = 1.0e-4

    (80 to 160 by 10).map(
      k=> (k, clusteringScore2(normalizedData, k, run, epsilon))
    ).toList.foreach(println)

    normalizedData.unpersist()
  }


  //Clustering, Task5
  /**
   * 对各个簇的熵加权平均,将结果作为聚类得分
   * @param counts
   * @return
   */
  def entropy(counts: Iterable[Int]) = {
    val values = counts.filter(_ > 0)
    val n: Double = values.sum
    values.map {
      v =>
        val p = v / n
        -p * math.log(p)
    }.sum
  }

  /**
   * 计算熵的加权平均
   * @param normalizedLabelsAndData
   * @param k
   * @param run
   * @param epsilon
   * @return
   */
  def clusteringScore3(normalizedLabelsAndData: RDD[(String, Vector)], k: Int, run: Int, epsilon: Double) = {
    val kmeans = new KMeans()
    kmeans.setK(k)
    kmeans.setRuns(run)
    kmeans.setEpsilon(epsilon)

    //建立KMeansModel
    val model = kmeans.run(normalizedLabelsAndData.values)
    //对每个数据集预测簇类别
    val labelAndClusters = normalizedLabelsAndData.mapValues(model.predict)
    //将RDD[(String, Vector)]  => RDD[(String, Vector)],即swap Keys / Values,对换键和值
    val clustersAndLabels = labelAndClusters.map(_.swap)
    //按簇提取标号集合
    val labelsInCluster = clustersAndLabels.groupByKey().values
    //计算所有集合中有多少标签(label),即标号的出现次数
    val labelCounts = labelsInCluster.map(_.groupBy(l => l).map(_._2.size))
    //通过类别大小来反映平均信息量,即熵
    val n = normalizedLabelsAndData.count()
    //根据簇大小计算熵的加权平均
    labelCounts.map(m => m.sum * entropy(m)).sum() / n
  }


  def clusteringTake5(rawData: RDD[String]): Unit ={
    val parseFunction = buildCategoricalAndLabelFunction(rawData)
    val labelAndData = rawData.map(parseFunction)
    val normalizedLabelsAndData = labelAndData.mapValues(buildNormalizationFunction(labelAndData.values)).cache()

    val run = 10
    val epsilon = 1.0e-4

    (80 to 160 by 10).map(
      k => (k, clusteringScore3(normalizedLabelsAndData, k, run, epsilon))
    ).toList.foreach(println)

    normalizedLabelsAndData.unpersist()
  }


  //Detect anomalies(发现异常)
  def bulidAnomalyDetector(data: RDD[Vector], normalizeFunction: (Vector => Vector)): (Vector => Boolean) = {
    val normalizedData = data.map(normalizeFunction)
    normalizedData.cache()

    val kmeans = new KMeans()
    kmeans.setK(150)
    kmeans.setRuns(10)
    kmeans.setEpsilon(1.0e-6)
    val model = kmeans.run(normalizedData)

    normalizedData.unpersist()

    //度量新数据点到最近簇质心的距离
    val distances = normalizedData.map(datum => distToCenter(datum, model))
    //设置阀值为已知数据中离中心点最远的第100个点到中心的距离
    val threshold = distances.top(100).last

    //检测,若超过该阀值就为异常点
    (datum: Vector) => distToCenter(normalizeFunction(datum), model) > threshold
  }

  /**
   * 异常检测
   * @param rawData
   */
  def anomalies(rawData: RDD[String]) = {
    val parseFunction = buildCategoricalAndLabelFunction(rawData)
    val originalAndData = rawData.map(line => (line, parseFunction(line)._2))
    val data = originalAndData.values
    val normalizeFunction = buildNormalizationFunction(data)
    val anomalyDetector = bulidAnomalyDetector(data, normalizeFunction)
    val anomalies = originalAndData.filter {
      case (original, datum) => anomalyDetector(datum)
    }.keys
    //取10个异常点打印出来
    anomalies.take(10).foreach(println)
  }
}

运行测试:

1、分类统计样本,降序排序

在这里插入图片描述

2、对数据集里面的样本进行建立KMeansModel,在输出每个簇的质心

在这里插入图片描述

[47.979395571029514,1622.078830816566,868.5341828266062,4.453261001578883E-5,0.006432937937735314,1.4169466823205539E-5,0.03451682118132869,1.5181571596291647E-4,0.14824703453301485,0.01021213716043885,1.1133152503947209E-4,3.6435771831099954E-5,0.011351767134933808,0.0010829521072021374,1.0930731549329986E-4,0.0010080563539937655,0.0,0.0,0.0013865835391279706,332.2862475203433,292.9071434354884,0.17668541759442902,0.17660780940042928,0.05743309987449906,0.05771839196793657,0.7915488441768395,0.020981640419422482,0.028996862475204364,232.4707319541719,188.6660459090725,0.7537812031907427,0.030905611108822645,0.6019355289260995,0.006683514837456327,0.1767539573296518,0.17644162179667539,0.05811762681672781,0.05741111695882666]
[2.0,6.9337564E8,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,57.0,3.0,0.79,0.67,0.21,0.33,0.05,0.39,0.0,255.0,3.0,0.01,0.09,0.22,0.0,0.18,0.67,0.05,0.33]

3、对数据集里面的样本中的每个簇中每个标号出现的次数进行计数,按照簇-类别计数,并且按照可读的方法输出

在这里插入图片描述

4、对数据集里面的样本进行对k的取值进行评价

应用欧氏距离公式到模型中,KMeansModel.predict方法中调用了KMeans对象的findCloest方法,计算获得平均质心距离,将平均质心距离进行优化后,在(30,100)区间内以10为等差数列数值不同k值对其评分

在这里插入图片描述

(30,1540.5923852420121)
(40,1558.9164173327615)
(50,1539.7573606099559)
(60,1039.5827412253561)
(70,1549.067688503937)
(80,1318.0711727106946)
(90,787.6205001930721)
(100,1175.3560873264119)

在前面算法实操中已经发现随着k的增大,结果得分持续下降,我要找到k值的临界点,过了这个临界点之后继续增加k值并不会显著降低得分这个点的k值-得分曲线的拐点。这条曲线通常在拐点之后会继续下行但最终趋于水平。在本实例中k>100之后得分下降很明显,故得出k的拐点应该大于100

对数据集进行再次k的取值然后进行评价操作,来大概统计出k的最佳值在什么区间,这里用到的是利用k值进行多次聚类操作, 利用setRuns()方法给定k的运行次数

在这里插入图片描述
在这里插入图片描述

最后得出k的最佳值在区间(80,160)

对各个簇的熵加权平均,将结果作为聚类得分

在这里插入图片描述

(80,0.05209130135533233)
(90,0.04561359716252666)
(100,0.044523803567403555)
(110,0.043887671711910776)
(120,0.04317319327291032)
(130,0.04175920080017419)
(140,0.04155690937168621)
(150,0.037079788920063885)
(160,0.03542243223173732)

在这里插入图片描述

用python进行视图可视化分析

# -*-coding:utf-8-*-
# -*-coding:utf-8-*-
import pandas as pd
import matplotlib.pyplot as plt
#读数据
data = pd.read_excel("K&&Score.xls")
print(data)
y_data = data['Score'][0:10]
print(y_data)
x_lable = data['K'][0:10]
print(x_lable)
plt.xlabel("K")
plt.ylabel("Score")
plt.plot(x_lable,y_data,marker='*',linewidth=1,color='green')
plt.show()

在这里插入图片描述

异常检测

从上图分析当k值增加至140时,过了这个临界点之后继续增加k值聚类熵值得分不会再显著降低。因此这个点可以认为是k值得分曲线的拐点,曲线通常在拐点之后会继续下行但最终会趋于水平。因此k值取150比较合理,此时既保证了聚类效果较优,有权衡了算法的执行效率。

选取k=150进行异常检测,得到的异常数据结果如下

在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
在Spring Boot中整合Ehcache缓存,需要进行以下几个步骤: 1. 添加Ehcache依赖 在pom.xml文件中添加Ehcache依赖: ``` <dependency> <groupId>net.sf.ehcache</groupId> <artifactId>ehcache</artifactId> <version>${ehcache.version}</version> </dependency> ``` 2. 配置Ehcache缓存 在application.yml(或application.properties)文件中配置Ehcache缓存: ``` spring: cache: type: ehcache ehcache: config: classpath:ehcache.xml ``` 其中,`spring.cache.type`属性指定使用的缓存类型为Ehcache,`ehcache.config`属性指定Ehcache配置文件的路径(在classpath下)。 3. 编写Ehcache配置文件 在classpath下创建`ehcache.xml`文件,配置Ehcache缓存的相关信息: ``` <ehcache> <diskStore path="java.io.tmpdir"/> <defaultCache maxEntriesLocalHeap="10000" eternal="false" timeToIdleSeconds="120" timeToLiveSeconds="120" diskSpoolBufferSizeMB="30" maxEntriesLocalDisk="10000000" diskExpiryThreadIntervalSeconds="120" memoryStoreEvictionPolicy="LRU" transactionalMode="off"> </defaultCache> <cache name="userCache" maxEntriesLocalHeap="1000" maxEntriesLocalDisk="10000" eternal="false" diskSpoolBufferSizeMB="20" timeToIdleSeconds="300" timeToLiveSeconds="600" memoryStoreEvictionPolicy="LFU" transactionalMode="off"> </cache> </ehcache> ``` 其中,`defaultCache`为默认缓存配置,`cache`为自定义缓存配置。 4. 在代码中使用缓存 在需要使用缓存的方法上添加`@Cacheable`注解,指定缓存名称和缓存key: ``` @Service public class UserServiceImpl implements UserService { @Autowired private UserDao userDao; @Override @Cacheable(value = "userCache", key = "#id") public User getUserById(Integer id) { return userDao.getUserById(id); } // ... } ``` 其中,`value`属性指定缓存名称,`key`属性为缓存key表达式,可以使用Spring表达式语言(SpEL)进行动态表达。 以上就是在Spring Boot中整合Ehcache缓存的步骤,通过使用Ehcache缓存可以有效地提高应用程序的性能和响应速度。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值