ST-GCN复现过程(Ubuntu20.04+GPU)(已完结)

参考

ST-GCN源码运行完整版(含OpenPose编译安装)及常见问题_咬我呀_Gemini的博客-CSDN博客

 关于在ubuntu20.04下openpose环境安装_openpose ubuntu安装_键盘强者的博客-CSDN博客

Linux服务器下openpose搭建_linux 安装openpose_蓝雨飞扬7的博客-CSDN博客
kinetics-skeleton格式行为数据提取方法_can not find pose estimation results._青年夏日科技工作者的博客-CSDN博客

配置:

CUDA11.1

cudnn 8.1.0

Ubuntu20.04

显卡3070

Python3.6

现有问题:

(1)3.3 节运行离线Demo失败,但目前来看不影响后续训练模型

(2)只能单卡跑,双卡报错还未解决

(3)测试结果比原文少了百分之1.4左右

1.下载源码、预训练模型

源码:

https://gitee.com/chenhongqiong/st-gcn.git

预训练模型:

models - Google 云端硬盘

下载好的模型文件拷贝至源码文件中./models文件路径下

下载数据集

kinetics-skeleton数据集,st-gcn作者提供的预处理kinetics-skeleton数据集是谷歌网盘,需要翻墙才能下载,大概8g。可以通过百度网盘,提取码:sqpx下载,(感谢第四条参考中提供的百度网盘链接)

原始ntu-rgbd数据集:

百度云版本:

GitHub - Hrener/3D-Action-recognition: PyTorch implementation of Two-stream CNN for 3D action recognition

也可以去官网填写申请(我用的这个方法,填写申请之后等一两天,只需要5.8g的骨骼数据):

ROSE Lab

2.环境搭建

2.1创建虚拟环境

conda create -n stgcn python=3.6
activate stgcn

2.2安装依赖项(在上述虚拟环境中)

2.2.1 pytorch

去官网查看对应版本的安装指令

PyTorch

以前的版本查询Previous PyTorch Versions | PyTorch

服务器的cuda是11.1,因此对应安装指令为

conda install pytorch==1.8.0 torchvision==0.9.0 torchaudio==0.8.0 cudatoolkit=11.1 -c pytorch -c conda-forge

测试安装成功

 2.2.2其他依赖项

conda install ffmpeg

进入st-gcn源码目录下

pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple

2.3 安装与配置openpose

2.3.1检查是否安装opencv和cmake

 2.3.2下载openpose

git clone https://github.com/CMU-Perceptual-Computing-Lab/openpose.git

如果在终端下载不了,就去网站手动下载(两个应该都行),全部克隆到本地mirrors / CMU-Perceptual-Computing-Lab / openpose · GitCode

https://github.com/CMU-Perceptual-Computing-Lab/openpose/tree/v1.5.0

2.3.3安装CMake GUI

sudo apt-get install cmake-qt-gui

2.3.4安装opencv

sudo apt-get install libopencv-dev

2.3.5安装caffe

sudo apt-get update

sudo apt-get install cmake git unzip

sudo apt-get install libprotobuf-dev libleveldb-dev liblmdb-dev

sudo apt-get install libsnappy-dev libhdf5-serial-dev protobuf-compiler

sudo apt-get install --no-install-recommends libboost-all-dev

sudo apt-get install libatlas-base-dev libopenblas-dev

sudo apt-get install the python3-dev python3-skimage

sudo pip3 install pydot

sudo apt-get install graphviz

如果倒数第二条遇到报错pip3:command not found,见Linux使用pip3报错:pip3:command not found_pip3找不到命令_嵌入式Linux充电站的博客-CSDN博客

cd openpose/
git submodule update --init --recursive --remote

报错fatal: Not a git repository (or any of the parent directories): .git,见

解决 fatal: Not a git repository (or any of the parent directories): .git 问题_蜗牛有力量的博客-CSDN博客

sudo bash ./scripts/ubuntu/install_deps.sh

sudo apt install protobuf-compiler libgoogle-glog-dev
cd openpose/3rdparty/
git clone https://github.com/CMU-Perceptual-Computing-Lab/caffe.git
git clone https://github.com/pybind/pybind11

如果上面这两个链接下不了,就用浏览器打开手动下载到本地,然后分别放到caffe和pybind11文件夹内

cd build/
cmake-gui ..

出现图形化界面

 确认上面两个路径没问题后,点击configure,

若报错CMake Error at cmake/Cuda.cmake:227 (message):   cuDNN version >3 is required.

则找到Openpose下 cmake/cuda.cmake file 和 /cmake/modules/FindCuDNN.cmake file.

file(READ {CUDNN_INCLUDE}/cudnn.h CUDNN_VERSION_FILE_CONTENTS)

改为

file(READ {CUDNN_INCLUDE}/cudnn_version.h CUDNN_VERSION_FILE_CONTENTS)

再次configure,无报错,显示configure done

 点击generate,然后关闭,回到终端,依旧是build目录下

make -j`nproc`

等待编译结束...

 跑例程失败

./build/examples/openpose/openpose.bin --image_dir examples/media/ --face --hand

./build/examples/openpose/openpose.bin --video examples/media/video.avi

若运行

./build/examples/openpose/openpose.bin --video examples/media/video.avi --model_pose MPI_4_layers --net_resolution 320x176

则报错模型问题

 参考ubuntu18编译安装opencv3.4.3, caffe和openpose, 踩坑记录._王二小、的博客-CSDN博客

手动下载模型后放到指定位置

又开始报1vs.0的错误

重新下载caffe GitHub - BVLC/caffe: Caffe: a fast open framework for deep learning.

更改Makefile文件:

LIBRARIES += glog gflags protobuf boost_system boost_filesystem m hdf5_serial_hl hdf5_serial
PYTHON_LIBRARIES ?= boost_python3 python3.6m

复制Makefile.config.example,并重命名为Makefile.config,更改

 仍然报错1vs.0

Problems while running the demo Check failed: status == CUDNN_STATUS_SUCCESS (1 vs. 0) CUDNN_STATUS_NOT_INITIALIZED - openpose - 码客

有人说是cuda和cudnn和gpu版本不匹配,查询版本:cudnn8.1.0,cuda11.1

cat /usr/local/cuda/include/cudnn_version.h | grep CUDNN_MAJOR -A 2

nvcc -V

 注:nvidia-smi查询到的是显卡支持的最高cuda版本

更新,问题解决了,是服务器显存爆了,显存没问题的话可以运行openpose的测试代码

3按照README.MD进行

3.1 Installation

cd st-gcn
cd torchlight
python setup.py install
cd ..

3.2 Get pretrained models

之前已完成

3.3 运行离线Demo失败

这里参考了复现STGCN CPU版 (ubuntu16.04+pytorch0.4.0+openpose+caffe)_stgcn复现_普通网友的博客-CSDN博客

修改processor下的demo.realtime.py

sys.path.append('{}/python/openpose/Release'.format(self.arg.openpose))
os.environ['PATH'] = os.environ['PATH'] + ';' + f'{self.arg.openpose}/x64/Release;' + f'{self.arg.openpose}/bin;'

运行新版demo

python3 main.py demo --openpose '/home/zhy/openpose/build' --video '/home/extend/zhy/code/st-gcn/resource/media/skateboarding.mp4'

旧版

python3 main.py demo_old --video /home/extend/zhy/code/st-gcn/resource/media/ta_chi.mp4 --openpose  /home/zhy/openpose/build

运行新版时报错,原因是刚刚改代码的时候tab和空格混用了,全部改成空格就行

 新错误

试试运行旧版demo

 改processor\demo_old.py

openpose = '{}/OpenPoseDemo.exe'.format(self.arg.openpose)

 运行后报错,没有解决,因此无法运行demo文件

3.4 数据预处理

使用以下命令处理ntu数据集,分别是xsub的train和val 还有xview的train和val,最后如果没有做其他更改的话,应该是在st-gcn目录下新建一个data包,保存到data/NTU-RGB-D/nturgb+d_skeletons.

python tools/ntu_gendata.py --data_path /home/extend/zhy/nturgb+d_skeletons

等待处理结束:

kinetics如下

python tools/kinetics_gendata.py --data_path /home/extend/zhy/kinetics-skeleton

3.5 Testing Pretrained Models

3.5.1 kinetics-skeleton

python main.py recognition -c config/st_gcn/kinetics-skeleton/test.yaml

 改batch_size再试一次,

python main.py recognition -c config/st_gcn/kinetics-skeleton/test.yaml --test_batch_size 8

3.5.2 cross-view NTU RGB+D

python main.py recognition -c config/st_gcn/ntu-xview/test.yaml --test_batch_size 8

等待结束

3.5.3 cross-subject NTU RGB+D

python main.py recognition -c config/st_gcn/ntu-xsub/test.yaml --test_batch_size 8

 3.6 训练

3.6.1 cross-view NTU RGB+D

以ntu-xview为例进行训练和测试

先在config/ntu-xview/train.yaml添加如下,并将batchsize改成8

start_epoch = 0	//这里填写上次训练中断时的epoch,如果上次训练了5个epoch(0,1,2,3,4),那么再次训练的时候填5即可
save_interval = 1	 //源码是时10个epoch保存一次模型参数weights,我设置为1
weights = model_path //这里填写最近一个epoch保存的model_weights.pt文件的路径,如果不加上这个参数,则默认训练一个新的模型

 训练代码

python main.py recognition -c config/st_gcn/ntu-xview/train.yaml

报错,=改成:再运行

 报错

改train.yaml的GPU数量为1

 成功开始训练

 参考win10 ST-GCN复现_mizit的博客-CSDN博客

如果中途暂停可以按照上面的,在train.yaml中更改start_epoch和weights

如下,注意weights要提供绝对路径

 就会接着迭代了

其它问题:试了双显卡训练,报错net/stgcn.py某一行代码的期望输入维度是256,但只提供了3,这个问题没有解决,估计是在这条命令出错了

RuntimeError: Given groups=1, weight of size [60, 256, 1, 1], expected input[8, 3, 1, 1] to have 256 channels, but got 3 channels instead

最后是用单卡,batchsize=56跑的

 如图,ntu-xview的训练结果是84.6

batchsize设为56,尝试等比缩小学习率至0.0875,重新测试

 结果87.47,用这次的模型去测试集跑

3.6.2 cross-subject NTU RGB+D

3.6.3 kinetics-skeleton

这两个数据集的测试方法和ntu-xview步骤相同,将训练时的数据集名字改了就可以,因此不做测试了。

4 结果

4.1 cross-view NTU RGB+D

测试代码

python main.py recognition -c config/st_gcn/ntu-xview/test.yaml --weights /home/extend/zhy/code/st-gcn/work_dir/recognition/ntu-xview/ST_GCN/epoch80_model.pt

结果:

————————————————————(完结)——————————————————

### 安装和运行 ORB-SLAM3 的指南 #### 准备工作 为了确保 ORB-SLAM3 能够顺利编译并运行,在 Ubuntu 20.04 中需先完成一系列依赖项的安装。 #### 安装必要的工具链和支持库 对于开发环境而言,Git 和 G++ 编译器是不可或缺的部分。通过以下命令可以获取这些基础组件: ```bash sudo apt-get update && sudo apt-get upgrade -y sudo apt-get install git g++ ``` 上述操作会更新包列表并将现有软件升级到最新版本[^3]。 #### 获取源码仓库 接着克隆官方 GitHub 上托管的 ORB_SLAM3 源代码至本地文件系统内: ```bash cd ~/ git clone https://github.com/raulmur/ORB_SLAM3.git ``` 这一步骤创建了一个名为 `ORB_SLAM3` 的目录用于存放项目资源[^2]。 #### 构建脚本权限设置与执行 赋予构建脚本可执行权限,并启动它来自动化整个编译流程: ```bash chmod +x ~/ORB_SLAM3/build.sh ./~/ORB_SLAM3/build.sh ``` 此过程包含了 CMake 配置以及 Makefile 执行等一系列动作,最终生成可供测试使用的二进制文件。 #### 关键路径验证 当一切准备就绪之后,可以通过检查 `$PATH` 变量确认是否已成功加入目标位置 `/home/user/ORBSLAM3/Examples/ROS`(假设用户名为 user)。如果显示正确,则说明环境变量配置无误[^1]。 #### 进阶依赖项处理 除了基本要素外,某些高级特性可能还需要额外的支持库,比如 Eigen3 或 Boost 库等。针对此类情况,建议按照官方文档指引逐一解决缺失部分;例如,Eigen3 的安装方式如下所示: ```bash git clone https://github.com/eigenteam/eigen-git-mirror cd eigen-git-mirror mkdir build && cd $_ cmake .. sudo make install ``` 而对于 Python 开发接口来说,则可通过下面这条指令快速搞定所需头文件: ```bash sudo apt install libpython2.7-dev ``` 至于其他特定需求,请参照具体应用场景调整相应策略[^4]。
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值