动态规划的两个基本例子

一,币值最大化问题:

给定一排n个硬币,其面值均为正整数c1,c2,…cn, 这些整数并不一定两两不同。请问如何选择硬币,使得在其原始位置互不相邻的条件下,所选硬币的总金额最大。
上述最大可选金额用F(n) 表示。为了得到F(n) 的递推关系,我们将所有可行的选择划分为两组:
包括最后一枚硬币的和不包括最后一枚硬币的。第一组中,可选硬币的最大金额等于cn + F(n - 2), 即最后一枚硬币的面值加上之前n - 2枚硬币的可选最大金额,按照 F(n) 的定义,另一组中,可选
的最大金额等于 F(n - 1) 。因此,我们得到符合初始条件的递推方程:
F(n) = max{cn + F(n - 2),F(n- 1)},n > 1
F(0) = 0,F(1) = c1
算法 CoinRow(C[1…n])

//应用公式①,自底向上求最大金额
                      //在满足所选硬币不相邻的条件下,从一排硬币中选择最大金额的硬币
                      //输入:数组 ***(C[1...n])*** 保存n个硬币的面值
                      //输出:可选硬币的最大金额
                     F[0] <—— 2 to n do
                         F[i] <max(C[i] + F[i - 2], F[i - 1])
                         return F[n]

举个图中的例子:
在这里插入图片描述
要求解一排硬币5,1,2,10,6,2的过程。
若要求出构成最大金额的那些硬币,我们需要回溯计算过程,来确定在递推方程中,时
cn + F(n - 2) 还是 F(n -1) ,产生了最终的最大金额。若是 cn + F(n - 2)
记录下每次的 cn 就行了,如这次的最优解为 {c1,c4,c6}
用算法 CoinRow 求 F(n),以得出可选最大金额以及构成最大金额的硬币集合,显然需要耗费
O(n)时间和O(n)空间。这远远优于直接应用自顶向下递推求解或者穷举查找。

二,找零问题:

需找零金额为n,最少要用多少面值为 d1 < d2 < d3 < … <dm 的硬币?假设有 m 种面值为 d1 < d2 < … < dm 的硬币,其中 d1 = 1,且每种面值的硬币数量无限可得。
F(n) 为总金额为 n 的数量最少的硬币数目,方便起见定义 F(0) = 0。获得 n 的途径只能是:
在总金额为 n - dj 的一堆硬币上加入一个面值为 dj 的硬币,其中 j = 1,2,…,m, 并且 n >= dj。因此,
我们只需要考虑所有满足上述要求的 dj 并选择使得 F(n - dj) + 1 最小的 dj 即可。由于 1 是常量
,我们显然可以先找出最小的 F(n - dj) ,然后加 1 即可。因此,我们得到了以下 F(n) 的递归公式
当n > 0, F(n) = min {F(n - dj)} + 1 j : n >= dj
F(0) = 0
我们可以用类似求解上述币值最大化问题的方法,从左至右填充一张单行表格来求出 F(n) ,但在这里,表格中每一格的计算都需要求出至多 m 个数的最小值。
算法 ChangeMaking(D[1…m],n)

//应用动态规划算法求解找零问题,找出使硬币加起来等于 n 时所需最少的硬币数目
//输入:正整数 n ,以及用于表示币值的递增整数数组D[1...m],D[1] = 1
//输出:总金额等于 n 的硬币最少的数目
F[0] <0
for i <1 to n do
temp <— ∞; j <1
while j <=m and i >= D[j] do
temp <min(F[i - D[j]],temp)
j <— j + 1
F[i] <— temp + 1
return F[n] 

对于 n = 6,币值 为1,3,4的硬币应用上述算法的过程如图所示:
在这里插入图片描述
要求出最优解使用了那些硬币,我们需要回溯上述计算来找出公式②中是哪些面值的硬币产生了
最小值。对上面的例子,最后一次引用公式(当 n = 6)时,最小值是由 d2 = 3 产生的
。第二个最小值 (当 n = 6 - 3)时,也是由该面值产生的。因此,对于 n = 6 的最优硬币集合就是
2 个 3。

参考书:算法设计与分析基础

  • 1
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
动态规划是一种解决最优化问题的算法,其基本思想是将原问题划分为若干个子问题,通过求解子问题的最优解来得到原问题的最优解。 以下是一个用C++实现的动态规划例子,解决了背包问题(0-1背包问题): ```c++ #include <iostream> #include <vector> #include <algorithm> using namespace std; int knapsack(int n, int W, vector<int>& wt, vector<int>& val) { vector<vector<int>> dp(n+1, vector<int>(W+1, 0)); for (int i = 1; i <= n; i++) { for (int j = 1; j <= W; j++) { if (wt[i-1] <= j) { dp[i][j] = max(dp[i-1][j], dp[i-1][j-wt[i-1]] + val[i-1]); } else { dp[i][j] = dp[i-1][j]; } } } return dp[n][W]; } int main() { int n = 3; // 物品数量 int W = 50; // 背包容量 vector<int> wt = {10, 20, 30}; // 每个物品的重量 vector<int> val = {60, 100, 120}; // 每个物品的价值 int res = knapsack(n, W, wt, val); cout << "The maximum value that can be obtained: " << res << endl; return 0; } ``` 该程序中,我们使用一个二维数组dp来保存子问题的解,其中dp[i][j]表示前i个物品放入容量为j的背包中能够获得的最大价值。状态转移方程为: ``` dp[i][j] = max(dp[i-1][j], dp[i-1][j-wt[i-1]] + val[i-1]); ``` 其中,wt[i-1]和val[i-1]分别表示第i个物品的重量和价值。如果第i个物品的重量小于等于j,那么有两种选择:放入背包或不放入背包。如果放入背包,那么背包的剩余容量为j-wt[i-1],此时能够得到的最大价值为dp[i-1][j-wt[i-1]] + val[i-1];如果不放入背包,那么背包的容量不变,此时能够得到的最大价值为dp[i-1][j]。因此,dp[i][j]取这两种情况的最大值。 最后,程序输出的结果即为放入物品后能够获得的最大价值。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值