动态规划--币值最大化、找钱、硬币收集

本文介绍了动态规划在解决实际问题中的应用,包括如何进行币值最大化,找到找零的最优策略,以及在硬币收集问题中找到最佳路径。通过递推方程解析了每个问题的解决方案,如币值最大化的f(n)递推公式,找零问题的F(n)递推公式,以及硬币收集问题中F(I,j)的计算方式。" 124306229,12557449,使用CArchive实现C++对象序列化,"['c++', 'visualstudio', '文件操作', '对象存储']
摘要由CSDN通过智能技术生成

一、币值最大化问题
问题描述:给定一排n个硬币,其面值均为整数c1, c2, …, cn, 这些整数并不一定两两不同。问如何选择硬币,使得在其原始位置互不相邻的条件下,所选硬币的总金额最大。
上述最大可选金额用f(n)表示,我们可以将所有可行的选择划分为两组:包括最后一枚硬币的和不包括最后一枚硬币的。第一组中,可选包含最后一枚硬币的,最大金额为Cn+f(n-2),即最后一枚硬币加上前面n-2枚硬币可选的最大金额。按照f(n)的定义,另一组中可选的最大金额为f(n-1),即前n-1枚硬币的最大金额。
可得出符合初始条件的递推方程:

f(n)=max{Cn+f(n-2),f(n-1)}
f(0)=0,f(1)=c1

#include<iostream>
#include<algorithm>
using namespace std;
const int N=10001;

int main()
{
   
    int n;
    int value[N];
    int f[N];
    memset(value,0,sizeof(value));
    memset(f,0,sizeof(f));

    cin>>n;
    for(int i=1;i<=n;i++)
        cin>>value[i];
    f[0]=0;
    value[0]=0;
    f[1]=value[1];
    for(int i=2;i<=n;i++){
   
        f[i]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值