目录
关于动态规划
动态规划(Dynamic Programming,DP)是运筹学的一个分支,是求解决策过程最优化的过程。
动态规划的两大前提:
1.无后效性。
无后效性是指如果在某个阶段上过程的状态已知,则从此阶段以后过程的发展变化仅与此阶段的状态有关,而与过程在此阶段以前的阶段所经历过的状态无关。——百度百科。
无后效性,有两层含义,第一层含义是,在推导后面阶段状态的时候,我们只关心前面阶段的状态值,不关心这个状态是怎么一步步推导出来的。第二层含义是,某阶段状态一旦确定,就不受之后阶段的决策影响。无后效性是一个非常“宽松”的要求。只要满足前面提到的动态规划问题模型,其实基本上都会满足无后效性。
我自己的理解就是:现阶段我做何种决策,只会影响到后面事态的发展,对于已经发生的事情无法改变。也就是说,之前的信息/局面并不会影响我们当前这一步的决策。
2.最优子结构。
最优子结构指的是,问题的最优解包含子问题的最优解。反过来说就是,我们可以通过子问题的最优解,推导出问题的最优解。如果我们把最优子结构,对应到我们前面定义的动态规划问题模型上,那我们也可以理解为,后面阶段的状态可以通过前面状态推导出来。
1. LC 70. 爬楼梯
先从最简单、最经典的做起!
题目:
假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?
注意:给定 n 是一个正整数。
示例 1:
输入: 2
输出: 2
解释: 有两种方法可以爬到楼顶。
1. 1 阶 + 1 阶
2. 2 阶
示例 2:输入: 3
输出: 3
解释: 有三种方法可以爬到楼顶。
1. 1 阶 + 1 阶 + 1 阶
2. 1 阶 + 2 阶
3. 2 阶 + 1 阶
首先拿到这道题为什么要使用动态规划?
根据上文,在推导后面阶段状态的时候,我们只关心前面阶段的状态值,不关心这个状态是怎么一步步推导出来的。同样的,这道题中,我站在第n个台阶上,怎么上来的?可以是在n-1阶上迈一步,也可以是在n-2阶上迈两步这两种方法。但是是如何到达n-1和n-2阶的呢?不关心。
class Solution {
public static int climbStairs(int n) {
// 定义出口
if( n==1 ) return 1;
if( n==2 ) return 2;
// 我们从1开始 ,0不要了
int [] dp = new int[n+1];
dp[1]=1;
dp[2]=2;
for (int i = 3; i <= n; i++) {
dp[i]=dp[i-1]+dp[i-2];
}
return dp[n];
}
}
2. LC 121. 买卖股票的最佳时机
给定一个数组 prices ,它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。
你只能选择 某一天 买入这只股票,并选择在 未来的某一个不同的日子 卖出该股票。设计一个算法来计算你所能获取的最大利润。
返回你可以从这笔交易中获取的最大利润。如果你不能获取任何利润,返回 0 。
示例 1:
输入:[7,1,5,3,6,4]
输出:5
解释:在第 2 天(股票价格 = 1)的时候买入,在第 5 天(股票价格 = 6)的时候卖出,最大利润 = 6-1 = 5 。
注意利润不能是 7-1 = 6, 因为卖出价格需要大于买入价格;同时,你不能在买入前卖出股票。
上来的想法就是暴力解,双循环,结果超时了。
然后最自然的想法就是左边取最小,右边取最大。
class Solution {
public:
int maxProfit(vector<int>& prices) {
int low = INT_MAX;
int result = 0;
for (int i = 0; i < prices.size(); i++) {
low = min(low, prices[i]); // 取最左最小价格
result = max(result, prices[i] - low); // 直接取最大区间利润
}
return result;
}
};
然后题目说求最值,那么想到动态规划。
我觉得这道题比较难的是dp数组的含义即状态如何定义。至于是怎么想到的,大家可以去LeetCode上看看大家的思路,我自己是想不出。
1.定义状态:
这里dp[i][0] 表示第i天持有股票的情况下,拥有的现金。(如果第i天买了股票,则dp[i][0] = 0-price[i])。
dp[i][1]表示第i天不持有股票的情况下,拥有的现金。
2.状态转移
- 先说dp[i][0],第i天持有股票的情况,可能是第i天前某一天买入的,也可能是第i天买入的。
dp[i][0] = dp[i-1][0](第一种情况第i-1天一定是买入的状态) 和 0-price[i] 中取较大的(因为要花费最小,才能收益最大)。
- 再说dp[i][1],第i天不持有股票,同样两种情况。可能是第i天前就不持有股票(有可能是卖了也有可能压根没买过,不关心),也可能是第i天卖了。
dp[i][1] = dp[i-1][1] 和dp[i-1][0] + price[i] (前一天还持有,第i天卖出) 中的较大值(因为要卖出点最大,才能收益最大)。
public static int maxProfit(int[] prices) {
int [][] dp = new int[prices.length][2];
// 初始化 第0天持有就是第0天就买了。
dp[0][0] = prices[0] * -1;
dp[0][1] = 0;
for (int i = 1; i < prices.length; i++) {
dp[i][0] = Math.max(dp[i-1][0],prices[i] * -1);
dp[i][1] = Math.max(dp[i-1][1],dp[i-1][0] + prices[i]);
}
return dp[dp.length-1][1];
}
不过这速度堪忧啊。。。
先把题目能做出来,之后再考虑优化。
3. LC 53. 最大子序和
给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
示例 1:
输入:nums = [-2,1,-3,4,-1,2,1,-5,4]
输出:6
解释:连续子数组 [4,-1,2,1] 的和最大,为 6 。
求最大和,想动态规划。
1. 定义状态
dp[i]代表以i为最后一个元素的连续子数组的最大和。
2.状态转移
dp[i]这个状态可以有以下两种方式转移来:i. 第i-1个元素加上第i个元素得来的。ii.i-1之前的和都太小了,可能是负数或者前面加起来还没i大,那我i就自己走自己的了。
所以dp[i] = Math.max(dp[i-1] + nums[i], nums[i]);
3.返回值
遍历dp数组,找最大的返回就可以啦。
public static int maxSubArray(int[] nums) {
// dp[i] : 表示以nums[i]为结尾的最大连续子数组的和。
if (nums.length == 0) return 0;
if (nums.length == 1) return nums[0];
int [] dp = new int[nums.length];
dp[0] = nums[0];
for (int i = 1; i < nums.length; i++) {
dp[i] = Math.max(nums[i],dp[i-1] + nums[i]);
}
int res = Integer.MIN_VALUE;
for (int i = 0; i < dp.length; i++) {
if (dp[i] > res)
res = dp[i];
}
return res;
}
4. LC 152. 乘积最大子数组
给你一个整数数组 nums ,请你找出数组中乘积最大的连续子数组(该子数组中至少包含一个数字),并返回该子数组所对应的乘积。
示例 1:
输入: [2,3,-2,4]
输出: 6
解释: 子数组 [2,3] 有最大乘积 6。
和第3题有点像嗷,但是乘积有个很不同的点就是,如果第i天之前的乘积为负数,如果第i天也是负数,那么乘积可能就会变成最大值。
所以在第3题的基础上还要再维护一个最小乘积数组。
1.状态定义
和第3题差不多,dpMax[i] 代表以i为最后一个元素的子数组最大乘积。dpMin[i]代表以i为最后一个元素为最后一个元素的子数组最小乘积。
2.状态转移
dpMax[i] 可能是有三种情况转移来的: dp[i-1] * nums[i], nums[i], dpMin[i-1] *nums[i]
dpMin[i] 同理。
//dpMax[i] = Math.max(dpMax[i-1]*nums[i],nums[i],dpMin[i-1]*nums[i])
//dpMin[i] = Math.min(dpMin[i-1]*nums[i],nums[i],dpMax[i-1]*nums[i])
3. 结果
遍历dpMax,返回最大的。
public static int maxProduct(int[] nums) {
// 维护一个最大乘积dp 和 一个最小乘积dp
int [] dpMax = new int[nums.length];
int [] dpMin = new int[nums.length];
//dpMax[i]代表以i为最后一个元素的子数组乘积。
//dpMax[i] = Math.max(dpMax[i-1]*nums[i],nums[i],dpMin[i-1]*nums[i])
//dpMin[i] = Math.min(dpMin[i-1]*nums[i],nums[i],dpMax[i-1]*nums[i])
dpMax[0] = dpMin[0] = nums[0];
for (int i = 1; i < nums.length; i++) {
dpMax[i] = Math.max(dpMax[i-1]*nums[i],Math.max(nums[i],dpMin[i-1]*nums[i]));
dpMin[i] = Math.min(dpMin[i-1]*nums[i],Math.min(nums[i],dpMax[i-1]*nums[i]));
}
int res = Integer.MIN_VALUE;
for (int i = 0; i < dpMax.length; i++) {
if (res < dpMax[i])
res = dpMax[i];
}
return res;
}
5. LC 718. 最长重复子数组
给两个整数数组 A 和 B ,返回两个数组中公共的、长度最长的子数组的长度。
输入:
A: [1,2,3,2,1]
B: [3,2,1,4,7]
输出:3
解释:
长度最长的公共子数组是 [3, 2, 1] 。
dp[i][j] 代表以A[i-1] B[j-1] 为最后一个元素的最长子数组的长度。
dp[i][j] 的取值取决于当前数字,也就是A[i-1] B[j-1] 是否相等。如果二者相等,那么dp[i][j] = dp[i-1][j-1] +1;否则dp[i][j] = 0;
public int findLength(int[] A, int[] B) {
// dp[i][j]
int max = 0;
int [][] dp = new int[A.length+1][B.length+1];
for (int i = 1; i <= A.length; i++) {
for (int j = 1; j <= B.length; j++) {
if (A[i-1] == B[j-1])
dp[i][j] = dp[i-1][j-1] + 1;
else dp[i][j] = 0;
max = Math.max(max, dp[i][j]);
}
}
return max;
}