动态 规划

本文通过一系列编程题目探讨动态规划的运用,包括最长公共子串、最长有效括号、整数拆分等,同时深入分析了爬楼梯、打家劫舍等问题的解题思路,涉及斐波那契序列和滚动数组的优化技巧。
摘要由CSDN通过智能技术生成

放苹果

描述
题目描述

把m个同样的苹果放在n个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法?(用K表示)5,1,1和1,5,1 是同一种分法。

数据范围:0<=m<=10,1<=n<=10。
本题含有多组样例输入。
'''
放苹果分为两种情况,一种是有盘子为空,一种是每个盘子上都有苹果。
令(m,n)表示将m个苹果放入n个盘子中的摆放方法总数。
1.假设有一个盘子为空,则(m,n)问题转化为将m个苹果放在n-1个盘子上,即求得(m,n-1)即可
2.假设所有盘子都装有苹果,则每个盘子上至少有一个苹果,即最多剩下m-n个苹果,问题转化为将m-n个苹果放到n个盘子上
即求(m-n,n)
'''
def f(m,n):
    if m<0 or n<0:
        return 0
    elif m==1 or n==1:
        return 1
    else:
        return f(m,n-1)+f(m-n,n)
while True:
    try:
        m,n=map(int,input().split())
        print(f(m,n))
    except:
        break

NC127 最长公共子串 

描述
给定两个字符串str1和str2,输出两个字符串的最长公共子串
题目保证str1和str2的最长公共子串存在且唯一。
示例1
输入:
"1AB2345CD","12345EF"
复制
返回值:
"2345"
class Solution:
    def LCS(self , str1 , str2 ):
        
        if len(str1) == 1:
            return str1
        if len(str2) == 1:
            return str2
        dp = [[0 for i in range(len(str1)+1)] for j in range(len(str2)+1)]
        maxlen = 0
        for i in range(len(str2)):
            for j in range(len(str1)):
                if str2[i] == str1[j]:
                    dp[i+1][j+1] = dp[i][j] + 1
                    if dp[i+1][j+1] > maxlen:
                        maxlen = dp[i+1][j+1]
                        pos = j+1  # position

        res = ''
        j = pos - maxlen
        while j < pos:
            res += str1[j]
            j += 1
        return res

32. 最长有效括号

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值