深度学习
文章平均质量分 96
大海腾与小乌堆
这个作者很懒,什么都没留下…
展开
-
『深度学习模型实现与技术总结』——AlexNet
文章目录简介特点ReLULRN与BNDropout网络结构224与227具体结构Pytorch代码实现相关参考 简介 AlexNet由Alex Krizhevsky提出的卷积神经网络,它在ImageNet LSVRC-2010比赛中夺得冠军并且远超第二名,证明依靠深度学习得到的特征可以优于手工设计的特征,掀起了CNN的浪潮。它在深度学习的发展过程中具有里程碑意义。 特点 ReLU 饱和与非饱和函数:当x趋向于正无穷与负无穷时,函数的导数都趋近于0,此函数即为饱和函数如Sigmoid和tanh,否则为非饱和原创 2021-02-22 15:09:23 · 668 阅读 · 0 评论 -
『深度学习模型实现与技术总结』——LeNet(Pytorch转化PaddlePaddle实现)
一、简介 LeNet是最早的卷积神经网络之一,诞生于1994年。通常说的LeNet一般是指LeNet经过多次迭代后的LeNet-5,是由Yann LeCun(被誉为“卷积网络之父”,深度学习三巨头之一)在1998年的论文"GradientBased Learning Applied to DocumentRecognition"中提出的用于手写字符识别的高效卷积神经网络。它是卷积神经网络的开山之作,大大推动了深度学习领域的发展。 二、网络结构 LeNet-5提出年代较早,面对当时计算能力的限制,为了降原创 2021-02-15 14:44:37 · 734 阅读 · 0 评论