字符串的全排列
问题描述:
给定一个长度为n的字符串,要求输出该字符串的所有字符的所有排列情况,比如给出字符串“abc”,则所有的排列情况为“abc”、“acb”、“bac”、“bca”、“cab”、“cba”。
思路:
首先将字符串s分解为一个等长的字符组ns,每个ns[i]存储一个字符,所以问题实际求的是字符组ns的全排列问题。以字符串“abc”为例,我们可以将其分为两个部分:a和bc,即第一个字符为第一部分,剩下的其余字符为第二部分,而所有的组合方案数量为第一部分所有的可能*第二部分所有可能。
我们可以先看一下怎么求出字符串“abc”的全部可能排列:
=> 第一部分:a 第二部分:bc
=> 第一部分:b 第二部分:ac
=> 第一部分:c 第二部分:ab
因为第二部分含有多个字符,这样又可以把第二部分看做是一个新的字符串的全排列问题,接着不断迭代,直至子问题的第二部分等于第一部分为止,所以所有排列可以这样求出:
=> 第一部分:a 第二部分:bc
=> 第一部分:a 第二部分:( 第一部分:b 第二部分:c )
=> 第一部分:a 第二部分:( 第一部分:c 第二部分:b )
=> 第一部分:b 第二部分:ac
…
可以看出,我们可以将上面变化分为三步:
- 将第一部分的字符与第二部分的字符互换
- 组合第二部分字符所有可能的排列
- 将开始的第一部分的字符互换回来,使排列还原开始的样子(防止重复)
不断重复以上三步,直到第二部分的所有字符与第一部分的字符互换了一遍为止,这样我们就得到了的排列情况,而当字符串长度为n时,也可以按照上面3步对字符串进行分解。
代码实现:
public static void paiLie(char[] s, int begin, int end) {
if (begin == end) {//子问题已经无法再分解时
for (int i = 0; i < s.length; i++) {
System.out.print(s[i]);
}
System.out.println();
}else {
for (int i = begin; i < end; i++) {
s = swap(s, begin, i);//第一部分与第二部分的字符互换
paiLie(s, begin+1, end);
s = swap(s, begin, i);//互换回来
}
}
}
互换函数:
public static char[] swap(char[] s, int i, int j) {
char m = s[i];
s[i] = s[j];
s[j] = m;
return s;
}
调用测试:
public static void main(String[] args) {
String s = "123";
char[] ns = new char[s.length()];
for (int i = 0; i < ns.length; i++) {
ns[i] = s.charAt(i);
}
paiLie(ns, 0, ns.length);
}