WWW2020 | 基于GNN和哈希学习的高效推荐系统

嘿,记得给“机器学习与推荐算法”添加星标


最近看了篇利用哈希技术来提高基于图神经网络的推荐系统检索速度的文章。该文的亮点本人认为主要有以下两点:(1)模型同时学习用户/物品的实值表示和离散表示,用于协调模型的效率和性能,(2)该文提出了一个端到端的训练框架,解决了哈希模型在反向传播中遇到的优化困境:即模型中包含非光滑函数sign(.)。因此把这篇文章推荐给大家。

标题:Learning to Hash with Graph Neural Networks for Recommender Systems

来源:WWW 2020

链接:https://arxiv.org/abs/2003.01917

1 Motivation

推荐系统已成为我们日常生活中支持各种在线服务的基本工具,比如网络搜索和电子商务平台。给定一个query,我们期望推荐引擎返回一小部分用户感兴趣的物品集合。这一过程中,包含了Recall和Ranking两个重要阶段。Recall主要是为了从大量(百万级)的物品中高效的检索出少量(几百几十)个候选物品;Ranking负责利用预测排序模型为用户生成一个精确的排序列表。为了提升召回质量,网络嵌入模型已经被广泛应用于推荐场景。在众多网络嵌入模型中,图神经网络(GNN)[1]作为结构化神经网络的一种特殊实例,在信息检索领域取得了最优性能。尽管如此,但在连续空间中筛选出这样一部分候选物品的计算成本太高,线性搜索的计算复杂度为 ,其中 为物品总数, 为特征维数。当 较大(百万级)时,这样的复杂度仍使得模型效率低下。因此,在实际的推荐中,如何提高召回阶段的效率成为了一个亟需解决的问题。

哈希技术[2]由于其从大数据中检索的高效性而引起了越来越多的关注。最近基于手工特征的哈希模型和深度哈希模型被相继提出,但前者需要首先学习实值表示,然后在后续步骤中利用符号阈值函数将其二进制化为哈希码,这样一种机制可能无法学得紧凑的二进制码,导致次优解;后者主要用于生成高质量二进制代码,与之相关联的实值嵌入的代表性能力可能很差,如图1所示。

从图1中我们发现,在推荐场景下哈希方法的推荐精度差于利用相应的实值嵌入的检索精度。因此在Ranking阶段,利用哈希方法获得的推荐精度并不是最优。

综上,为了同时解决召回效率和排序精度两大问题,论文提出了一种用于哈希图数据的新型端到端学习框架,名为HashGNN。

2 HashGNN Model

模型的整体框架如图2所示,HashGNN模型包含了两个主要部件:(1)Graph Neural Network (2)Hash Layer。模型的大致流程为:将graph作为输入,通过一个图编码器 生成一个节点的中间表示 ,再将中间表示 喂入哈希层 从而学得节点的哈希码

在介绍各部件之前,我们先给出相关定义:

2.1 Graph Encoder

在该工作中,作者选择一个两层的图卷积网络(graph convolutional network, GCN)[3]作为图编码器。在GCN中生成嵌入的主要步骤为整合节点的邻居信息。令

  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值