基于图卷积的价格感知推荐

本文介绍了PUP模型,一种利用图卷积网络处理价格因素的推荐系统方法。该模型通过统一异构图、图卷积编码器和基于成对交互的解码器,解决了用户价格意识的未知性和商品类别对价格敏感度的影响,提高了推荐的准确性。
摘要由CSDN通过智能技术生成

嘿,记得给“机器学习与推荐算法”添加星标


Paper:Price-aware Recommendation with Graph Convolutional Networks

Link:https://arxiv.org/pdf/2003.03975v1.pdf

一篇发表在ICDE2020的非常好的文章哦~

在之前的我所阅读的推荐系统文章中,除了2018年的RecSys中一篇从生产者角度出发的文章外,印象中没有过多的与推荐场景关联的实际/现实因素。大多数研究都更关注用户特征和用户与物品之间的交互,以计算点击率之类的相关评估结果。但是在电商领域,像“价格”这种真实的、甚至有些起决定性的因素,却很少出现在科研文章中,这也许与公开数据集中常常没有这一特征有关。当然了,也许是我读的还不够多。

但是价格,是多么重要的特征啊!就算我们通过很好的模型能够给用户推荐她确实喜欢的物品,她也确实点击了这些推荐的物品。一旦商品详情中价格不符合她的心理预期,她就会遗憾地关掉网页。那么即使点击率有所提高了,转化率依旧不会提高。

今天我们来分享一篇重点描述了“价格因素”在推荐系统中应用的文章。


文章中提到价格在推荐系统中应用的难度有以下两点:

  • 1)用户的价格意识未知。用户对商品价格的偏好和敏感度未知,这仅隐含地反映在用户购买的商品中。也就是说,我们只能通过用户是否购买了来判断该商品的价格是否合适。用户很少明确声明其对商品价格的偏好和敏感性。因此,要构建数据驱动的方法,我们必须从用户的购买历史中推断出用户对商品价格的个性化意识。更具挑战性的是,我们需要考虑相似用户历史中反映的CF效应,以提高推理的准确性。

  • 2)商品类别对用户的价格意识影响很大。商品价格如何影响用户的意图很大程度上取决于商品的价格。产品类别,也就是用户对商品价格的感知和承受能力在各个类别之间可能会发生显着变化。例如一个女人可能不愿意花1000块钱买一块手表,但是可能愿意花1500块钱买一条新裙子。而男人则可能正好相反。因此,重要的是要考虑商品类别信息,以准确推断用户的价格偏好。

因此,作者开发了一种有效的方法来预测用户的购买意愿,并重点关注推荐系统中的价格因素,命名为PUP模型

对于第一个难点,借鉴了图卷积网络(GCN),对用户物品和物品价格之间的传递关系进行建模。关键思想是通过物品作为桥梁传播价格对用户的影响,从而使学习到的用户表示具有价格意识。

对于第二个难题,我们将项目类别进一步整合到传播进度中,并对可能的成对交互进行建模,以预测用户与项目之间的交互。

进一步的分析表明,对价格意识进行建模对于预测用户对未开发类别的商品的偏好特别有用。


PUP模型

模型图如下图所示。

PUP模型的整体设计组件如下:统一的异质图,一个图卷积编码器(graph convolutional encoder)和一个基于成对交互的解码器。构建的统一异构图由四种类型的节点组成,其中用户节点连接到商品节点,商品节点连接到价格节点和类别节点。

文中强调,这项工作的重点是利用商品价格来提高推荐的准确性。由于用户的价格意识与产品类别密切相关,所以在设计价格意识推荐系统时,必须将类别考虑在内。

其中,  和  表示用户集和物品集, 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值