嘿,记得给“机器学习与推荐算法”添加星标
推荐系统作为以人为本的人工智能技术的最前沿应用,被广泛部署在网络世界的每个角落,其大大提高了人类的决策效率。然而,尽管推荐系统具有巨大的作用和潜力,但也可能导致对用户、物品、生产者、平台甚至整个社会的不良影响,例如由于不透明的过程而损害用户的信任,对不同的消费者或生产者的不公平待遇,由于大量使用用户的私人敏感数据进行个性化推荐而导致的隐私泄露问题,由于缺乏对用户自身数据的控制而导致推荐重复的内容的回音室效应等等。所有这些都造成了对可信推荐系统的迫切需求,以减轻或避免这种不利影响和风险。
在本文综述中,将介绍与可信和负责任的推荐系统有关的技术,包括但不限于可解释推荐算法、公平性推荐算法、隐私保护的推荐算法、鲁棒推荐算法、用户可控的推荐算法,以及从不同角度讨论了可信和负责任的推荐算法的关系。通过本文综述,希望为读者提供一个对可信推荐系统研究领域的全貌,并引起社会对可信推荐系统的重要性、现有研究成果和未来研究方向的关注。

论文:https://arxiv.org/abs/2207.12515
推荐系统基础
本文首先对推荐算法的基础概念进行了总结,首先概述了推荐算法的输入和输出,然后介绍了推荐系统的代表性算法。
推荐系统的输入基本围绕<用户, 物品, 交互>这个三元组来进行扩展。其中,用户可以是标量的ID号,也可以是具体的用户属性信息,比如性别、年龄等;物品在这里可以有更广的含义,比如购物平台中的商品、音乐平台的歌曲、社交平台上的朋友等;交互在推荐系统场景中大致分为了显式和隐式的数据。

推荐系统的输出通常包括为用户量身定制的个性化推荐列表,以及伴随推荐的解释理由。具体来说,推荐系