嘿,记得给“机器学习与推荐算法”添加星标
第16届国际网络检索与数据挖掘会议WSDM将在2023年2月27日到3月3日于新加坡举行。今年此次会议共收到了690份有效投稿,最终录取篇数为123篇,录取率为17.8%。该会议历年的论文投稿量以及接收率可见下图。
作为主流的检索与数据挖掘会议,论文的话题主要侧重于搜索、推荐以及数据挖掘领域,因此该会议大部分接收论文的主题是围绕着信息检索与推荐系统来说的。若想了解去年以及前年WSDM相关信息可参考:
欢迎大家扫码进入微信群,一起交流学习鸭。
本文特意从123篇论文中筛选出与推荐系统强相关的42篇文章供大家欣赏,其中从主题上看大致包括了跨域推荐[1,4]、序列推荐[2,12,19,22]、多行为推荐[3,6]、基于排序建模的推荐[5]、多样性推荐[7,30]、可解释性推荐[8]、组推荐[9]、去偏推荐[10,31,36]、兴趣点推荐[11]、基于强化学习的推荐[13]、对话推荐[18,21]、路线推荐[20]、新闻推荐[23]、基于协同过滤的推荐[15,24,35]、因果推荐[26,28]、联邦遗忘学习推荐[27]、公平性推荐[29,40,41]、基于知识图的推荐[32]、基于解耦的推荐[7,11,35]、基于对比学习的推荐[33,,38]、基于知识蒸馏的推荐[39]等。
更多接收论文可前往官网查阅。
https://www.wsdm-conference.org/2023/program/accepted-papers
下文将列出相关的论文列表,包括论文标题、单位以及论文链接与摘要,供大家提前领略学术前沿趋势与牛人的最新想法。
1. Towards Universal Cross-Domain Recommendation
2. IDNP: Interest Dynamics Modeling using Generative Neural Processes for Sequential Recommendation
3. Learning to Distinguish Multi-User Coupling Behaviors for TV Recommendation
4. One for All, All for One: Learning and Transferring User Embeddings for Cross-Domain Recommendation
5. Slate-Aware Ranking for Recommendation
6. Knowledge Enhancement for Contrastive Multi-Behavior Recommendation
7. Disentangled Representation for Diversified Recommendations
8. Cognition-aware Knowledge Graph Reasoning for Explainable Recommendation
9. Self-Supervised Group Graph Collaborative Filtering for Group Recommendation
10. Calibrated Recommendations as a Maximum Flow Problem
11. DisenPOI: Disentangling Sequential and Geographical Influence for Point-of-Interest Recommendation
12. Multi-Intentions Oriented Contrastive Learning for Sequential Recommendation
13. Generative Slate Recommendation with Reinforcement Learning
14. MUSENET: Multi-Scenario Learning for Repeat-Aware Personalized Recommendation
15. A Personalized Neighborhood-based Model for Within-basket Recommendation in Grocery Shopping
16. SGCCL: Siamese Graph Contrastive Consensus Learning for Personalized Recommendation
17. Relation Preference oriented High-order Sampling for Recommendation
18. Variational Reasoning over Incomplete Knowledge Graphs for Conversational Recommendation
19. Exploiting Explicit and Implicit Item relationships for Session-based Recommendation
20. Range Restricted Route Recommendation Based on Spatial Keyword
21. Meta Policy Learning for Cold-Start Conversational Recommendation
22. Efficiently Leveraging Multi-level User Intent for Session-based Recommendation via Atten-Mixer Network
23. Improving News Recommendation with Channel-Wise Dynamic Representations and Contrastive User Modeling
24. Simplifying Graph-based Collaborative Filtering for Recommendation
25. AutoGen: An Automated Dynamic Model Generation Framework for Recommender System
26. A Causal View for Item-level Effect of Recommendation on User Preference
27. Federated Unlearning for On-Device Recommendation
28. Explicit Counterfactual Data Augmentation for Recommendation
29. Uncertainty Quantification for Fairness in Two-Stage Recommender Systems
30. DGRec: Graph Neural Network for Recommendation with Diversified Embedding Generation
31. Unbiased Knowledge Distillation for Recommendation
32. VRKG4Rec: Virtual Relational Knowledge Graph for Recommendation
33. Knowledge-Adaptive Contrastive Learning for Recommendation
34. Heterogeneous Graph Contrastive Learning for Recommendation
35. Disentangled Negative Sampling for Collaborative Filtering
36. Separating Examination and Trust Bias from Click Predictions for Unbiased Relevance Ranking
37. A Bird’s-eye View of Reranking: from List Level to Page Level
38. CL4CTR: A Contrastive Learning Framework for CTR Prediction
39. Directed Acyclic Graph Factorization Machines for CTR Prediction via Knowledge Distillation
40. Pairwise Fairness in Ranking as a Dissatisfaction Measure
41. Marginal-Certainty-aware Fair Ranking Algorithm
42. An F-shape Click Model for Information Retrieval on Multi-block Mobile Pages
1. Towards Universal Cross-Domain Recommendation
Jiangxia Cao (Institute of Information Engineering, Chinese Academy of Sciences)*; Shaoshuai Li (Ant Group); Bowen Yu (Alibaba, DAMO Academy); xiaobo guo (antgroup); Tingwen Liu (Institute of Information Engineering, CAS); Bin Wang (Xiaomi AI Lab)
2. IDNP: Interest Dynamics Modeling using Generative Neural Processes for Sequential Recommendation
Jing Du (University of New South Wales)*; Zesheng Ye (University of New South Wales, Sydney); Lina Yao (University of New South Wales); bin guo (Northwestern Polytechnical University); zhiwen yu (Northwestern Polytechnical University)
https://arxiv.org/abs/2208.04600
Recent sequential recommendation models rely increasingly on consecutive short-term user-item interaction sequences to model user interests. These approaches have, however, raised concerns about both short- and long-term interests. (1) short-term: interaction sequences may not result from a monolithic interest, but rather from several intertwined interests, even within a short period of time, resulting in their failures to model skip