AI人工智能讲师大模型AIGC讲师叶梓老师之淘宝主搜:大模型在长尾Query改写召回上的实践

大家好,今天分享一篇阿里淘宝主搜将大语言模型LLM和搜索query理解结合应用的工作。

  • 论文:Large Language Model based Long-tail Query Rewriting in Taobao Search

  • 公司:淘宝主搜

  • 链接:https://arxiv.org/pdf/2311.03758.pdf

  • 会议:WWW under review

图片

省流版

淘宝主搜把通义千问大模型应用在Query改写上,去改善那些低资源query上的召回效果。

2023年10月就已经推全。14天的AB指标如下,GMV,订单和UV都有明显增长(比上一代重写模型CLE-QR高出0.4%、0.34%和0.33%,意味着 为淘宝搜索贡献了数百万GMV ),特别是在低资源query上。

注意,基于LLM改写query的覆盖面仅占比30%左右,但是还是撬动了大盘。

图片

具体方法

图片

多指令数据集构建+SFT

步骤一 :构建查询改写数据集

利用线上的query改写策略  去生成 查询,改写 pair对,从而采样一批数据。

图片

步骤二 :带相关性约束的拒绝采样策略

保证改写结果和原query之间的相关性,引入了相关性指标去过滤。其中  表示判断相关性方法, 就是阈值。

图片

步骤三 :带增量约束的拒绝采样策略

为了确保重写可以在一定程度上扩展原始查询的语义含义,避免低资源query的问题,定义了一个“增量”指标incr去过滤。同时还引入该query下交互多的(比如点击)的商品的标题  加入数据集作为语义补充。

图片

步骤四:构建辅助任务(质量分类)指令数据集

从线上日志去捞(查询,改写)pair对,构建prompt,然后让人工标注判断是否相关。

图片

步骤五:构建辅助任务(商品标题预测)指令数据集

用query和query下最高后验的商品标题构建(query, title) pair对,并组织成prompt形式。(注意:这里可能原文prompt写错了)

图片

步骤六:构建辅助任务(CoT)指令数据集

让人工标注去对query生成重写,并补充CoT过程,最后形成如下的prompt。

图片

步骤七:SFT过程

将上述数据集混合在一起,在LLM上进行SFT过程(自回归生成)。和经典的SFT过程一样,LLM的prefix被固定住,不计算loss。其中  表示基于LLM的query改写模型。

图片

离线反馈指标

定义了三个指标(相关性,增量,全域成交hitrate)来衡量改写质量,用于alignment过程的评估。其中相关性、增量也被用于步骤二和三的过滤策略。

这三个指标在淘宝搜索的离线系统上运行,即模拟线上请求query,通过SFT后的LLM获取改写结果,然后将这些重写结果和线上query送进离线系统,获取检索结果,并通过这三个指标去评估改写质量,从而得到重写结果的偏序关系。

  • 相关性指标 :在改写query的检索结果中,利用相关性模型计算原始query和检索商品标题的相关性。该指标表示相关性大于阈值的数量在改写query的检索结果中的比例。比例越高,说明改写query和原始query的语义gap越小。

图片

  • 增量指标 :确保重写可以在一定程度上扩展原始查询的语义含义,避免低资源query的问题而定义的。 是淘宝自己定义的该query下质量高的检索结果合集。笔者这里理解可能是精品库,比如历史上该query下成交率很高的商品库之类的。这个指标表示改写query的检索结果中属于“精品”库且相关性大于阈值的数量 与 “基线”的比例。比例越高,说明改写query能够带来的增量越高。

图片

  • 全域成交hitrate指标 : 表示在搜索场景外的成交商品集合。 和  表示离线检索系统中利用原始query和改写query检索到的商品集合。假设一个商品在搜索场中并未被交易,但是与当前用户的query在语义上有关联。这说明原始query没有成功检索到该产品。然而,如果改写query能返回该商品,那就意味着该商品存在于  中。这证明了改写query确实能够弥补原始query丢失的某些语义。

图片

基于PRO算法的alignment

这部分详细的细节可以看阿里出的这篇论文:Preference Ranking Optimization for Human Alignment[1]

为了避免通过reward model引入bias,引入了基于Bradley Terry模型的偏好排名优化(PRO)。该方法旨在强制模型学习离线反馈提供的query改写结果的偏序关系。根据Bradley Terry模型,选择策略的概率应与其相应的奖励成比例。给定一个偏序关系 ,preference概率则表示为:

图片

在PRO中, 是奖励函数,定义为LLM生成的改写的归一化对数概率。PRO将这个pair-wise的偏序关系扩展到更一般的list-wise偏序。此外,引入温度以捕捉基于奖励的排序的重要性。PRO损失由以下方程表示:

图片

其中  和  表示排序差异。 是用于alignment的数据集, 就是策略模型,n是候选改写的数量。

alignment过程中的最终loss即为:

图片

在线serving

起一个离线任务收集低资源query (业务自己去定义,文中说的是query下检索结果70%不相关或者结果数量少于1w),用LLM进行改写,存到redis里面。线上serving,命中redis中query的,相应改写结果会用于倒排索引补充召回。

图片

数据集和执行细节

训练集
  • SFT过程:从2023年9月前的线上改写日志里面捞了20 million的记录。然后执行了两轮拒绝采样,获得了419,806个<query, rewrite>pair对。此外将155,662个手动重写数据包含在数据集中,以确保SFT模型的重写符合人类偏好。最后,将质量分类、商品标题预测和CoT任务中的每个任务各选取了50,000个样本,并与查询重写数据集结合,构建了多指令SFT数据集。

  • alignment过程:从查询重写数据集中随机选择了10,000个查询。对于每个查询,我们使用SFT模型生成5个候选查询。这些50,000个重写结果随后使用淘宝离线系统进行评分。在去除任何异常值后,对齐训练数据集共包含45,350个候选重写。

测试集

对于离线测试集,从淘宝搜索日志中选择了14,981个查询来评估模型的性能。其中,50%的查询是按实际查询比例随机抽样的。此外,为了评估模型重写长尾查询的能力,从长尾查询中抽样了剩余50%的数据。

执行细节

用于模型训练的优化器是AdamW。在多指令SFT阶段,模型的学习率设置为1e-5,进行一次epoch的训练。在目标对齐阶段,模型的学习率设置为1e-6,进行四次epoch的训练。此外,重写任务的提示最大长度设置为64,而其他任务的最大长度设置为256。

离线结果

版权限制加上千问有电商数据预训练,所以就用了千问模型作为基座。

图片

图片

对齐过程中的候选重写数量也做了消融。

图片

这里抄了下翻译,简单看看即可。

将BEQUE与多个基准进行比较,包括CLE-QR、query2doc(Q2D)、BART、Qwen和基于RL的LLM。CLE-QR是淘宝搜索的上一代查询重写器,它基于对比学习生成语义表示并检索相关的重写。BART是一种基于编码器-解码器结构的强大预训练生成模型。我们使用在线日志中的查询对对其进行微调,以增强其重写电子商务查询的能力。Qwen是一种基于解码器结构的大规模语言模型,包含70亿个参数。同样,我们使用在线日志中的查询pair对其进行微调,以增强其重写电子商务查询的能力。此外,引入了基于RL的LLM,并利用相关性、增量和hitrate作为奖励,鼓励RL模型对齐。

图片

结论如下:

  • 生成模型在“Torso”和“Tail”查询情景下优于判别模型

  • LLM模型相比小型模型表现出更优秀的长尾语义理解能力

  • 检索增强方法展示了有限的语义扩展能力

  • 强化学习(RL)可能会引入偏差并影响重写LLMs的有效性

  • 不同的离线指标在奖励方面有不同的作用

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值