如何根据模型参数量估计需要的显存?

文章讨论了如何根据模型参数量粗略估算显存需求,介绍不同精度(如FP16、BF16、INT8和INT4)对显存的影响。对于训练,强调了训练时模型权重、优化器和计算图内部变量对显存的占用,以及现有框架的优化策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近大模型发布的很频繁,各种排行榜几乎天天在变化,你方唱罢我登场,好不热闹。

我现在有一张老破小的显卡,看到新发布了个模型,如何根据参数量粗略判断能不能运行起来?

图片

只进行推理

如果只是进行推理的话,还是比较容易计算的。

目前模型的参数绝大多数都是float32类型, 占用4个字节。所以一个粗略的计算方法就是,每10亿个参数,占用4G显存(实际应该是10^9*4/1024/1024/1024=3.725G,为了方便可以记为4G)。

比如LLaMA的参数量为7000559616,那么全精度加载这个模型参数需要的显存为:

7000559616 * 4 /1024/1024/1024 = 26.08G

这个数字就有点尴尬,专注游戏的Geforce系列最高只有24G,运行不起来,至少得上Tesla系列了。

图片

好在我们可以才用半精度的FP16/BF16来加载,这样每个参数只占2个字节,所需显存就降为一半,只需要13.04G。游戏学习两不误。

半精度是个不错的选择,显存少了一半,模型效果因为精度的原因会略微降低,但一般在可接受的范围之内。

如果有个3070显卡,8G显存,还有的玩么?可以玩,采用int8的精度,显存再降一半,仅需6.5G,但是模型效果会更差一些。

我的PC机大概10年前配的,GTX 960 4G,当时最顶配!然而现在只能玩玩int4精度,显存再降一半,仅需3.26G。当年我可是花了千把块买的,虽说只能勉强推理7B的大模型,但是也算是上车了。

目前int4就是最低精度了,再往下效果就很难保证了。比如百川给的量化结果对比如下:

图片

注意上面只是加载模型到显存,模型运算时的一些临时变量也需要申请空间,比如你beam search的时候。所以真正做推理的时候记得留一些Buffer,不然就容易OOM。

如果显存还不够,就只能采用Memery Offload的技术,把部分显存的内容给挪到内存,但是这样会显著降低推理速度。

懒人记法表(粗估,有误差)

dtype每10亿参数需要占用内存
float324G
fp16/bf162G
int81G
int40.5G

我还想训练

图片

训练的话就有点复杂了,因为模型训练的时候显存使用包括如下几部分:

图片

  1. 模型权重,计算方法和上面一样。

  2. 优化器。

    • 如果你采用AdamW,每个参数需要占用8个字节,因为需要维护两个状态。也就说优化器使用显存是全精度(float32)模型权重的2倍。

    • 如果采用bitsandbytes优化的AdamW,每个参数需要占用2个字节,也就是全精度(float32)模型权重的一半。

    • 如果采用SGD,则优化器占用显存和全精度模型权重一样。

  3. 梯度

    • 梯度占用显存和全精度(float32)模型权重一样。

  4. 计算图内部变量(有时候也叫Forward Activations)

    • pytorch/tensorflow等框架采用图结构来计算,图节点在forward和backward的时候需要存储,所以也需要占用显存。

    • 比如下面代码

      y = self.net_a(x)
      z = self.net_b(y)
      
    • 这里面中间的x, y, z都需要存储,但是如果写成下面这样,y就不用存储了。

      z = self.net_b(selt.net_a(x))
      
    • 理论上一个net block可以完全用函数给包裹起来,不使用中间变量。下一代计算框架是函数式编程语言?

    • 所以这一部分跟模型具体的实现有关系,而且 正比于batch_size 。batch_size越大,这一部分占用的越多。同样的结论也适用于sequence length。

  5. 一些临时显存占用,先不计算。

所以说,如果模型想要训练,只看前3部分,需要的显存是至少推理的3-4倍。7B的全精度模型加载需要78G ~ 104G。

然后计算图内部变量这一部分只能在运行时候观测了,可以两个不同的batch的占用显存的差值大概估算出来。

以上就是根据模型参数估计显存的大概方法,实际影响显存占用的因素还有很多,所以只能粗略估计个数量级。

剖析完训练时显存占用情况后,优化的思路也就有了,目前市面上主流的一些计算加速的框架如DeepSpeed, Megatron等都在降低显存方面做了很多优化工作,比如量化,模型切分,混合精度计算,Memory Offload等等,大家感兴趣后续可以再给大家分享。

### 训练BEVFusion模型所需GPU显存大小 对于训练像BEVFusion这样的复杂多模态感知模型,其GPU内存需求取决于多个因素,包括但不限于模型架构设计、输入数据尺寸以及所采用的具体优化策略。 #### 影响GPU内存需求的因素 1. **模型参数量** Transformer结构因其高效的并行计算能力和强大的表达能力而广泛应用于现代深度学习框架中。然而,随着层数增加和隐藏单元数量增长,模型参数总量也会显著上升,这直接导致了更高的GPU内存消耗[^1]。 2. **批量大小(Batch Size)** 批量大小的选择不仅影响收敛速度还决定了每轮迭代过程中需要占用多少临时存储空间用于梯度累积与反向传播运算。较大的batch size虽然有助于加速训练过程中的统计稳定性,但也相应增加了单次前向/后向传递期间所需的额外资源开销。 3. **特征图分辨率** 对于视觉任务而言,图像或其他形式的空间化表征往往占据着相当一部分显存份额。特别是当涉及到高维张量操作时(例如三维卷积),即使是很小的变化也可能引发指数级的增长趋势。 4. **混合精度训练技术的应用** 利用FP16半精度浮点数代替传统FP32可以有效降低一半以上的即时工作集规模,从而缓解部分压力。此外,通过自动损失缩放机制还能保持数值稳定性和最终性能表现不受损害。 为了更精确地估计特定条件下BEVFusion模型的实际GPU内存使用情况,建议参考官方文档或开源项目页面获取详细的配置说明,并结合实验环境特点做出适当调整。通常情况下,开发者们会在README文件里注明推荐硬件规格及最低限度的要求。 ```python import torch from bevfusion.models import BEVFusionModel model = BEVFusionModel() dummy_input = torch.randn((batch_size, channels, height, width)).cuda() with torch.no_grad(): output = model(dummy_input) memory_allocated = round(torch.cuda.memory_allocated() / (1024 * 1024), 2) print(f"Allocated GPU Memory: {memory_allocated} MB") ``` 此代码片段展示了如何利用PyTorch库监控指定实例创建前后分配给当前默认CUDA设备上的总字节数目变化,进而粗略判断目标网络大致占用了多少物理RAM容量。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值