利用大规模无监督学习提升药物分子表示

人工智能咨询培训老师叶梓 转载标明出处

在人工智能驱动的药物设计和发现领域,获取具有信息量的分子表示是一个至关重要的前提。近年来,研究者们将分子抽象为图,并利用图神经网络(GNNs)进行分子表示学习,展现出了巨大的潜力。然而,实际应用中GNNs面临着两个主要问题:一是用于监督训练的标记分子数据不足;二是模型对新合成分子的泛化能力较差。

为了解决这些问题,腾讯AI Lab的研究人员提出了一种名为GROVER(Graph Representation frOm self-superVised mEssage passing tRansformer)的新框架。该框架通过在节点、边和图级别上设计精心的无监督学习任务,能够从大量未标记的分子数据中学习丰富的结构和语义信息。

GROVER预训练框架

在大规模无标记数据上进行预训练,GROVER模型能够学习分子的丰富结构和语义信息。该模型基于Transformer构建,使用特制的图神经网络(GNNs)作为自注意力机制的构建块。这种设计使得模型不仅能够捕获图数据中的结构信息,还能在节点和边的消息传递路径上实现信息流动。

GROVER由两个模块组成:节点GNN转换器(node GNN transformer)和边GNN转换器。为了便于说明,本文只详细描述节点GNN转换器(简称node GTransformer),其结构如图1所示。

主要组件包括(图1)&#x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

人工智能大模型讲师培训咨询叶梓

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值