AI人工智能 基于知识图谱减轻大规模语言模型的幻觉问题

○ 提出了一种新的框架,即基于知识图谱的自主修正(KGR),用于利用知识图谱来减轻大规模语言模型在推理过程中的虚构问题。

○ KGR利用语言模型从生成的回答中提取、选择、验证和修正实际陈述,通过在知识图谱中存储的实际知识来实现自主的知识验证和修正过程。

○ 实验结果表明,KGR在复杂的推理过程中可以帮助语言模型显著提高在实际问答基准上的性能,从而减轻虚构问题并增强语言模型的可靠性。

1. 现有方法通常只使用用户的输入来查询知识图谱,无法解决在推理过程中由LLMs产生的事实错误产生的幻觉问题。文章的提出的KGR是否能够解决这个问题?

回答:是的,KGR框架通过将KG与LLMs结合,可以在LLMs的推理过程中修正初始生成的回答,从而减轻事实上LLMs的幻觉问题。

2. KGR框架如何使用LLMs从模型生成的回答中提取、选择、验证和修正事实陈述?

回答:KGR框架使用LLMs从模型生成的回答中提取关键的事实陈述,并使用LLMs检测文中提到的实体,然后从KG中检索相关的事实陈述。随后,KGR根据KG中返回的事实陈述验证每个提取的事实陈述的真实性,并根据验证结果修正之前生成的回答。

3. KGR框架使用的知识图谱是什么?如何选择相关的知识图谱中的事实陈述?

回答:KGR框架使用的知识图谱是Wikidata,它包含了来自维基百科、维基媒体共享资源和维基媒体运动相关维基的结构化数据。框架通过在模型生成的回答中检测实体来选择相关的知识图谱中的事实陈述。

4. KGR框架如何处理复杂的推理任务?

回答:KGR框架通过使用链式验证的方式来处理复杂的推理任务。它可以迭代地提取、检测、选择、验证和修正事实陈述,确保生成的回答中的所有事实与知识图谱中存储的事实一致。

5. KGR框架在不同数据集上的实验证明了什么?

回答:在不同的数据集上的实验证明KGR框架在减轻LLMs的幻觉问题和处理复杂推理任务方面表现出显著的优势。与基线方法相比,KGR框架在各种条件下都取得了更好的性能,特别是在处理复杂的推理任务时表现出了更高的准确性。

6. KGR框架与基线方法相比,它的优势在哪里?

回答:与基线方法相比,KGR框架通过使用KG进行回答修正,能更有效地减轻LLMs的幻觉问题。与基于信息检索的方法相比,KGR方法基于知识图谱的知识更可靠。另外,在复杂的推理任务中,KGR框架通过链式验证的方式能够显著提高性能,而传统的问题相关知识检索方法则无法做到这一点。

7. KGR框架对不同类型的LLMs具有通用性吗?

回答:是的,KGR框架在紧密的、开源的LLMs和对齐的LLMs上都表现出了良好的通用性。它能够在各种不同的条件下工作,并在不同类型的LLMs上取得显著的改进。

8. KGR框架在处理实体识别和事实选择中的效果如何?

回答:KGR框架在处理实体识别和事实选择时表现出了较高的可靠性。错误分析显示,KGR框架的错误主要是由于实体识别和事实选择方面的问题,这也提示了进一步改进实体识别和事实选择的重要性。

9. KGR框架能否处理多轮复杂任务?

回答:是的,KGR框架通过迭代多轮修正来处理多轮复杂任务。实验结果表明,KGR框架能够在多轮修正中保持高效和准确,以确保生成的回答中的所有事实与知识图谱中存储的事实一致。

10. KGR框架相较于其他方法的优势和不足有哪些?

回答:KGR框架相较于其他方法在减轻LLMs的幻觉问题和处理复杂推理任务方面具有明显优势。然而,框架在实体识别和事实选择方面仍然有改进的空间,这是需要进一步优化的方向。

论文链接:https://arxiv.org/abs/2311.13314.pdf

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值