人工智能咨询培训老师叶梓 转载标明出处
想要掌握如何将大模型的力量发挥到极致吗?叶老师带您深入了解 Llama Factory —— 一款革命性的大模型微调工具(限时免费)。
1小时实战课程,您将学习到如何轻松上手并有效利用 Llama Factory 来微调您的模型,以发挥其最大潜力。
CSDN教学平台录播地址:https://edu.csdn.net/course/detail/39987
更多分享,关注视频号(直播分享):sphuYAMr0pGTk27 抖音号:44185842659
在医疗领域,诊断错误是一个全球性问题,每年导致大量患者遭受永久性残疾甚至死亡。仅在美国,每年就有约79.5万人因误诊而遭受严重后果。这些误诊大多源于医生的认知偏差和判断失误。为了减少误诊,提升医疗决策的科学性,研究者们提出了“医疗辅助系统”(Healthcare Copilot)的概念,旨在为医疗从业者和患者提供诊断决策支持。
然而,现有的基于启发式方法的检索增强生成(RAG)模型在处理复杂医疗问题时存在局限性,尤其是在面对症状相似的疾病时,往往无法提供准确的诊断建议。为了解决这一问题,南洋理工大学(新加坡)LILY研究中心的研究团队提出了一种名为MedRAG的新型医疗辅助诊断模型。该模型通过结合知识图谱(Knowledge Graph)推理和检索增强生成(Retrieval-augmented Generation, RAG)技术,显著提高了医疗诊断的准确性和特异性,尤其在处理具有相似症状的疾病时表现出色。
MedRAG的核心在于将知识图谱(KG)与RAG技术相结合,通过构建一个包含疾病关键诊断差异的四层层次化知识图谱,动态整合电子健康记录(EHR)数据库中的相似病例,并在大模型(LLM)中进行推理,从而实现更精准的诊断决策支持。
四层层次化诊断知识图谱
MedRAG构建了一个包含疾病类别、亚类别、具体疾病名称以及疾病特征的四层层次化知识图谱。这一结构不仅涵盖了疾病的分类信息,还详细描述了每种疾病的症状、受影响部位、活动限制等特征。例如,图1展示了MedRAG的总体框架,其中知识图谱的构建模块通过疾病聚类和层次化聚合,将电子健康记录(EHR)中的疾病信息整合到知识图谱中。图2则进一步展示了知识图谱的细节,包括疾病特征的分解和关键诊断差异的增强。
知识图谱推理增强
MedRAG通过知识图谱中的关键诊断差异信息,结合检索到的电子健康记录(EHR),触发大模型的推理能力。这一过程在图2中被详细描述。具体来说,MedRAG首先将患者的症状分解为详细的临床特征,然后通过多级匹配和向上遍历的方式,在知识图谱中识别与患者症状最相关的疾病亚类别。这些信息被整合到大模型的输入中,从而生成精准的诊断建议和治疗方案。
主动提问机制
为了应对患者信息不完整的情况,MedRAG引入了主动提问机制。当患者的症状描述不足以支持明确诊断时,模型会根据知识图谱中的关键特征,生成针对性的后续问题,帮助医生进一步澄清患者病情。例如,表3展示了在不同信息缺失比例下,MedRAG通过主动提问机制提升诊断准确性的结果。结果显示,随着关键特征信息的逐步补充,模型的诊断准确性显著提高。
实验验证与性能表现
MedRAG的性能在两个数据集上进行了验证:DDXPlus和CPDD。实验结果如表1所示:
|
---|
从表中可以看出,MedRAG在两个数据集上的表现均优于现有的多种RAG方法,尤其是在高特异性诊断任务(L3)上,其准确率比第二名高出11.32%(CPDD)和1.23%(DDXPlus)。这表明MedRAG能够更精准地区分症状相似的疾病。
此外,MedRAG还展示了良好的泛化能力,能够在多种大模型上实现高效的推理和诊断支持。表2展示了MedRAG在不同大模型上的性能表现:
|
---|
结果表明,引入知识图谱推理后,模型的诊断准确性显著提升,尤其是在小参数模型中,提升幅度更为明显。例如,Mixtral-8x7B在L3任务上的准确率从22.34%提升到63.46%。