人工智能咨询培训老师叶梓 转载标明出处
大模型不仅在语言理解方面表现出色,更在推理、规划和指令遵循等多个领域展现出显著的智能。为了系统性地探索LLMs在智能体规划中的应用,中国科学技术大学与华为诺亚方舟实验室的研究人员联合开展了一项全面的调查研究。这项研究首次对LLM在智能体规划领域的应用进行了分类和分析,涵盖了任务分解、计划选择、外部模块辅助规划、反思与完善以及记忆增强规划等多个方向。旨在揭示LLMs在智能体规划中的潜力与挑战,为未来的研究和应用提供指导。
分类
图1展示了LLM-Agent规划的分类体系,将现有的工作分为五个主要方向:任务分解(Task Decomposition)、多规划选择(Multi-plan Selection)、外部规划器辅助规划(External Planner-aided Planning)、反思和完善(Reflection and Refinement)以及记忆增强规划(Memory-augmented Planning)。
表1 展示了一个新颖且系统的分类体系。
任务分解
现实世界中的任务通常复杂且多步骤,给规划带来了巨大挑战。任务分解方法采用了分而治之的思想,将复杂任务分解为若干子任务,然后依次为每个子任务制定计划。这一过程可以表述为: