想要掌握如何将大模型的力量发挥到极致吗?叶梓老师带您深入了解 Llama Factory —— 一款革命性的大模型微调工具。
1小时实战课程,您将学习到如何轻松上手并有效利用 Llama Factory 来微调您的模型,以发挥其最大潜力。
CSDN教学平台录播地址:https://edu.csdn.net/course/detail/39987
视频号(直播分享):sphuYAMr0pGTk27 抖音号:44185842659
叶梓,上海交通大学计算机专业博士毕业,在校期间的主研方向为数据挖掘、机器学习、人工智能。毕业后即进入软件行业从事信息化技术相关工作;负责或参与了多项国家级、省市级人工智能及大数据项目的建设工作。在人工智能和大数据应用等方面都有着丰富的经验。
1、企业级知识库建设与应用
- 知识库建设步骤
- 数据收集与整理:从企业文档、FAQ中提取知识
- 知识表示:表格知识、向量表示、树状结构、知识图谱等
- 知识库的使用
- 知识库与大模型的结合
- 知识库如何增强大模型性能
- 实时知识更新与模型同步
- 知识图谱介绍(原理、设计与实现)
- KAG应用
2、RAG技术实践
- RAG技术概述
- RAG(Retrieval-Augmented Generation)的定义与优势
- RAG的应用场景:问答系统、文档分析
- RAG应用的评价方式与指标
- 词嵌入技术
- 词嵌入与语义空间
- 高维向量的快速模糊匹配
- 向量数据库
- 混合检索与多路召回
- Rerank
- RAG实战技巧
- 基模选择(qwen、DS、GLM、书生等)
- RAG与微调的适用场景
- 数据准备技巧(OCR、理解表格、半结构化)
- chunk技巧(摘要、重叠、长度选择、构造问题)
- Agentic chunking
- 查询扩展与改写(指代消解、HyDE)
- 向量数据库使用技巧(标题、正负向情感)
- 提示词优化技巧:(RTGO、Costar、CRISPE、BROKE等)
- 多轮问答技巧(任务框架、信息提取、追问策略、可信度)
- RAG(Agent)工具
- Dify:低代码ai开发平台
- Coze:大量的agent可供选择
- Agentic RAG工具介绍
3、RAG案例分析
-
- 通用知识库问答场景(协同办公)
- 复杂知识库问答场景(临床辅助决策)
- 基于语义和空间的聚类(市民热线多诉合并)
- 术语提取场景(中医知识图谱构建)
- 多轮对话场景(酒店客服)
- 综合应用(自动生成报告文档)
4、多模态大模型原理与实践
- 基于Transformer的视觉模型
- ViT、Beit
- CLIP与BLIP
- 多模态大模型介绍
- qwen_vl_chat
- Yi_vl_chat
- LLaVa
-
- 数据集准备:标注与预处理
- 模型训练与优化:超参数调整、正则化技术
- 多模态大模型的训练
- 训练工具简介
- 多模态数据集准备:标注与预处理
- 模型训练与优化:超参调整等