在SQL中常见的操作主要是增、删、改、查几个动作,那么pandas能否实现对数据的这几项操作呢?答案是Of Course!
增:添加新行或增加新列
dic = {'Name':['LiuShunxiang','Zhangshan'],'Sex':['M','F'],'Age':[27,23],'Height':[165.7,167.2],'Weight':[61,63]}
student2 = pd.DataFrame(dic)
print(student2)
Age Height Name Sex Weight
0 27 165.7 LiuShunxiang M 61
1 23 167.2 Zhangshan F 63
现在将student2中的数据新增到student中,可以通过concat函数实现:
student3 = pd.concat([student,student2])
print(student3)
Age Height Name Sex Weight
0 14 69.0 Alfred M 112.5
1 13 56.5 Alice F 84.0
2 13 65.3 Barbara F 98.0
3 14 62.8 Carol F 102.5
4 14 63.5 Henry M 102.5
5 12 57.3 James M 83.0
6 12 59.8 Jane F 84.5
7 15 62.5 Janet F 112.5
8 13 62.5 Jeffrey M 84.0
9 12 59.0 John M 99.5
10 11 51.3 Joyce F 50.5
11 14 64.3 Judy F 90.0
12 12 56.3 Louise F 77.0
13 15 66.5 Marry F 112.0
14 16 72.0 Philip M 150.0
15 12 64.8 Robert M 128.0
16 15 67.0 Ronald M 133.0
17 11 57.5 Thomas M 85.0
18 15 66.5 Willam M 112.0
0 27 165.7 LiuShunxiang M 61.0
1 23 167.2 Zhangshan F 63.0
注意到了吗?在数据库中union必须要求两张表的列顺序一致,而这里concat函数可以自动对齐两个数据框的变量!
新增列的话,其实在pandas中就更简单了,例如在student2中新增一列学生成绩:
print(pd.DataFrame(student2, columns=['Age','Height','Name','Sex','Weight','Score']))
Age Height Name Sex Weight Score
0 27 165.7 LiuShunxiang M 61 NaN
1 23 167.2 Zhangshan F 63 NaN
对于新增的列没有赋值,就会出现空NaN的形式。
删:删除表、观测行或变量列
删除数据框student2,通过del命令实现,该命令可以删除Python的所有对象。
del student2 #删除数据框student2, 通过del命令可以删除python的所有对象
print(student2)
删除指定的行
print(student.drop([0,1,3,6]))
Age Height Name Sex Weight
2 13 65.3 Barbara F 98.0
4 14 63.5 Henry M 102.5
5 12 57.3 James M 83.0
7 15 62.5 Janet F 112.5
8 13 62.5 Jeffrey M 84.0
9 12 59.0 John M 99.5
10 11 51.3 Joyce F 50.5
11 14 64.3 Judy F 90.0
12 12 56.3 Louise F 77.0
13 15 66.5 Marry F 112.0
14 16 72.0 Philip M 150.0
15 12 64.8 Robert M 128.0
16 15 67.0 Ronald M 133.0
17 11 57.5 Thomas M 85.0
18 15 66.5 Willam M 112.0
原数据中的第1,2,4,7行的数据已经被删除了。
根据布尔索引删除行数据,其实这个删除就是保留删除条件的反面数据,例如删除所有14岁以下的学生:
print(student[student['Age']>14])
Age Height Name Sex Weight
7 15 62.5 Janet F 112.5
13 15 66.5 Marry F 112.0
14 16 72.0 Philip M 150.0
16 15 67.0 Ronald M 133.0
18 15 66.5 Willam M 112.0
删除指定的列
print(student.drop(['Height','Weight'],axis=1).head())
Age Name Sex
0 14 Alfred M
1 13 Alice F
2 13 Barbara F
3 14 Carol F
4 14 Henry M
我们发现,不论是删除行还是删除列,都可以通过drop方法实现,只需要设定好删除的轴即可,即调整drop方法中的axis参数。默认该参数为0,表示删除行观测,如果需要删除列变量,则需设置为1。
改:修改原始记录的值
如果发现表中的某些数据错误了,如何更改原来的值呢?我们试试结合布尔索引和赋值的方法: 例如发现student3中姓名为LiuShunxiang的学生身高错了,应该是173,如何改呢?
student3.loc[student3['Name'] == 'LiuShunxiang','Height']=173
print(student3[student3['Name'] == 'LiuShunxiang'][['Name','Height']])
Name Height
0 LiuShunxiang 173.0
这样就可以把原来的身高修改为现在的170了。 看,关于索引的操作非常灵活、方便吧,就这样轻松搞定数据的更改。
查:有关数据查询部分,上面已经介绍过
下面重点讲讲聚合、排序和多表连接操作。
聚合:pandas模块中可以通过groupby()函数实现数据的聚合操作
根据性别分组,计算各组别中学生身高和体重的平均值:
print(student.groupby('Sex').mean())
Age Height Weight
Sex
F 13.222222 60.588889 90.111111
M 13.400000 63.910000 108.950000
如果不对原始数据作限制的话,聚合函数会自动选择数值型数据进行聚合计算。如果不想对年龄计算平均值的话,就需要剔除改变量:
print(student.drop('Age',axis=1).groupby('Sex').mean())
Height Weight
Sex
F 60.588889 90.111111
M 63.910000 108.950000
groupby还可以使用多个分组变量,例如根本年龄和性别分组,计算身高与体重的平均值:
print(student.groupby(['Sex','Age']).mean())
Height Weight
Sex Age
F 11 51.300000 50.50
12 58.050000 80.75
13 60.900000 91.00
14 63.550000 96.25
15 64.500000 112.25
M 11 57.500000 85.00
12 60.366667 103.50
13 62.500000 84.00
14 66.250000 107.50
15 66.750000 122.50
16 72.000000 150.00
当然,还可以对每个分组计算多个统计量:
print(student.drop('Age',axis=1).groupby('Sex').agg([np.mean,np.median]))
Height Weight
mean median mean median
Sex
F 60.588889 62.50 90.111111 90.00
M 63.910000 64.15 108.950000 107.25
排序:
排序在日常的统计分析中还是比较常见的操作,我们可以使用sort_index和sort_values实现序列和数据框的排序工作:
Data = pd.Series(np.array(np.random.randint(1,20,10)))
print(Data)
print(Data.sort_index())
print(Data.sort_values(ascending=False))
0 18
1 15
2 16
3 18
4 16
5 8
6 17
7 10
8 16
9 6
dtype: int64
0 18
1 15
2 16
3 18
4 16
5 8
6 17
7 10
8 16
9 6
dtype: int64
3 18
0 18
6 17
8 16
4 16
2 16
1 15
7 10
5 8
9 6
dtype: int64
在数据框中一般都是按值排序,
例如:
print(student.sort_values(by = ['Age','Height']))
Age Height Name Sex Weight
10 11 51.3 Joyce F 50.5
17 11 57.5 Thomas M 85.0
12 12 56.3 Louise F 77.0
5 12 57.3 James M 83.0
9 12 59.0 John M 99.5
6 12 59.8 Jane F 84.5
15 12 64.8 Robert M 128.0
1 13 56.5 Alice F 84.0
8 13 62.5 Jeffrey M 84.0
2 13 65.3 Barbara F 98.0
3 14 62.8 Carol F 102.5
4 14 63.5 Henry M 102.5
11 14 64.3 Judy F 90.0
0 14 69.0 Alfred M 112.5
7 15 62.5 Janet F 112.5
13 15 66.5 Marry F 112.0
18 15 66.5 Willam M 112.0
16 15 67.0 Ronald M 133.0
14 16 72.0 Philip M 150.0
多表连接:
多表之间的连接也是非常常见的数据库操作,连接分内连接和外连接,在数据库语言中通过join关键字实现,pandas我比较建议使用merger函数实现数据的各种连接操作。 如下是构造一张学生的成绩表:
dic2 = {'Name':['Alfred','Alice','Barbara','Carol','Henry','Jeffrey','Judy','Philip','Robert','Willam'],'Score':[88,76,89,67,79,90,92,86,73,77]}
score = pd.DataFrame(dic2)
print(score)
Name Score
0 Alfred 88
1 Alice 76
2 Barbara 89
3 Carol 67
4 Henry 79
5 Jeffrey 90
6 Judy 92
7 Philip 86
8 Robert 73
9 Willam 77
现在想把学生表student与学生成绩表score做一个关联,该如何操作呢?
stu_score1 = pd.merge(student, score, on='Name')
print(stu_score1)
Age Height Name Sex Weight Score
0 14 69.0 Alfred M 112.5 88
1 13 56.5 Alice F 84.0 76
2 13 65.3 Barbara F 98.0 89
3 14 62.8 Carol F 102.5 67
4 14 63.5 Henry M 102.5 79
5 13 62.5 Jeffrey M 84.0 90
6 14 64.3 Judy F 90.0 92
7 16 72.0 Philip M 150.0 86
8 12 64.8 Robert M 128.0 73
9 15 66.5 Willam M 112.0 77
注意,默认情况下,merge函数实现的是两个表之间的内连接,即返回两张表中共同部分的数据。可以通过how参数设置连接的方式,left为左连接;right为右连接;outer为外连接。
stu_score2 = pd.merge(student, score, on='Name', how='left')
print(stu_score2)
Age Height Name Sex Weight Score
0 14 69.0 Alfred M 112.5 88.0
1 13 56.5 Alice F 84.0 76.0
2 13 65.3 Barbara F 98.0 89.0
3 14 62.8 Carol F 102.5 67.0
4 14 63.5 Henry M 102.5 79.0
5 12 57.3 James M 83.0 NaN
6 12 59.8 Jane F 84.5 NaN
7 15 62.5 Janet F 112.5 NaN
8 13 62.5 Jeffrey M 84.0 90.0
9 12 59.0 John M 99.5 NaN
10 11 51.3 Joyce F 50.5 NaN
11 14 64.3 Judy F 90.0 92.0
12 12 56.3 Louise F 77.0 NaN
13 15 66.5 Marry F 112.0 NaN
14 16 72.0 Philip M 150.0 86.0
15 12 64.8 Robert M 128.0 73.0
16 15 67.0 Ronald M 133.0 NaN
17 11 57.5 Thomas M 85.0 NaN
18 15 66.5 Willam M 112.0 77.0
左连接实现的是保留student表中的所有信息,同时将score表的信息与之配对,能配多少配多少,对于没有配对上的Name,将会显示成绩为NaN。
946

被折叠的 条评论
为什么被折叠?



