康耐视深度学习ViDi-ViDi四大工具介绍与主要用途

康耐视ViDi工具利用深度学习解决机器视觉难题,包括 Locate(定位)、Read(读取)、Analyze(分析)和Classify(分类)四大工具。Locate用于定位复杂特征,Read执行OCR,Analyze无监督模式检测异常,监督模式分割缺陷区域,Classify则用于对象和场景分类。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Cognex ViDi 工具是一系列机器视觉工具,通过深度学习解决各种难以解决的挑战。虽然这些工具共享一个引擎,但它们在图像中寻找的内容不同。更具体地说,在分析单个点、单个区域或完整图像时,每个工具都有不同的侧重点。
Locate,定位工具也称为蓝色工具
在这里插入图片描述
Cognex ViDi 蓝色定位工具用于查找和定位图像中的单个或多个特征。无论是嘈杂背景中的小特征还是零散复杂对象;蓝色定位工具都可以通过学习标注的图像来定位和识别复杂的特征对象。训练蓝色定位工具,您只需要
提供标记目标特征的图像。

Read,蓝色读取工具也称为蓝色工具
在这里插入图片描述
Cognex ViDi 蓝色读取工具用于在图像中执行光学字符识别 (OCR)。无论是干净印刷的字符到嘈杂背景上强烈变形的字符,蓝色读取工具都可以通过学习标注的图像来识别和读取字符。训练蓝色读取工具,您只需要提供标
记目标字符的图像。

Analyze,红色工具也称为有监督或无监督

关于康耐视(Cognex)深度学习VIDI系列中的RED模块,以下是对其功能和技术特点的详细介绍: ### Cognex Deep Learning VIDI RED 模块概述 Cognex Deep Learning 是一种专为工业视觉设计的深度学习软件解决方案。其 VIDI 系列提供了多个模块来满足不同的应用场景需求,其中包括 **VIDI RED** 模块。VIDI RED 主要专注于 **分类任务** 和简单的模式识别问题[^1]。 #### 功能特性 - **易于使用的界面**: 类似于 DLHUB 图形深度学习平台,VIDI 提供了一个直观的用户界面,允许用户通过拖放操作完成模型构建、训练和验证过程,而无需编写代码。 - **目标用途**: 面向那些可能不具备深厚编程背景的技术人员或工程师,帮助他们在制造环境中快速实现自动化质量控制和其他视觉检测任务。 - **支持多类别的分类分析**: 可以区分正常产品各种类型的缺陷品,并进一步细分为更具体的类别以便更好地理解生产线上可能出现的不同情况。 - **集成性强**: 能够轻松嵌入现有的生产线控制系统之中并之交互工作。经过训练后的模型可以被导出至其他环境如 LabVIEW 或者直接部署到边缘设备上运行推理流程。 #### 技术细节 - 使用先进的卷积神经网络 (CNNs),特别是针对小型数据集优化过的版本来进行高效的学习过程。这些 CNN 架构类似于 DeeplabV3+ 或 U-net 这样的语义分割框架,在某些情况下也会采用迁移学习策略以减少所需标注的数据量并提高泛化能力[^2]。 - 训练过程中采用了诸如 Adam optimizer 的先进算法来加速收敛速度同时保持稳定性。此外还会利用交叉熵损失函数指导整个优化方向确保最终得到高质量的结果[^4]。 #### 应用场景实例 假设一家工厂希望自动辨别 PCB 板上的焊接点是否存在缺失或者形状异常等问题,则可以通过收集一定数量的标准良好状态下的焊盘图片以及存在不同类型瑕疵状况的照片作为输入资料交给 VIDI RED 处理。系统会自动生成相应的特征映射图谱并通过反复迭代调整参数直至达到满意的预测准确性为止之后即可投入实际运用当中去替代人工目检环节从而提升整体工作效率降低成本开支。 --- ```python # 示例 Python 伪代码展示如何加载已保存的模型文件并执行推断操作 from cognex_deep_learning import load_model, predict_image model_path = 'path/to/trained/red/model' image_to_classify = 'path/to/image.jpg' loaded_model = load_model(model_path) prediction_result = predict_image(loaded_model, image_to_classify) print(f"The predicted class is {prediction_result['class']} with confidence score of {prediction_result['confidence']}") ``` --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

视觉人机器视觉

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值